Skip to main content

Optimal Curing Strategy Enhancement of Epidemic Processes with Self-adaptive SBX Crossover

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2018)

Abstract

Epidemic processes in networks pose sever challenges to network operators and more generally in the management of public health. One of these challenges is the research of an optimal curing policy able to suppress the epidemic. In this paper, we model the epidemic spreading in networks with a Susceptible-Infected-Susceptible (SIS) process and exploit the N-Intertwined Mean-Field Approximation (NIMFA) of the SIS model. Then, we propose a constrained genetic algorithm which assigns specific curing rates to nodes in order to minimize the total curing cost while reducing the number of infected nodes within the network. Simulating both real-world Internet backbones and Facebook networks, together with Erdős-Rényi, Watts-Strogatz and Bárabasi-Albert synthetic networks, we show that the use of a self-adaptive simulated binary crossover (SBX) improves a genetic algorithm employing a classical SBX crossover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The spectral radius of a square matrix \(A \in C^{N \times N}\) is the largest absolute value of its (real or complex) eigenvalues \(\lambda _1, \ldots , \lambda _N\), i.e. \(\lambda _{max}(A) = max\{\mid \lambda _1\mid , \ldots , \mid \lambda _N\mid \}\).

  2. 2.

    A semidefinite positive matrix \(A \in R^{N \times N}\) is a symmetric matrix such that \(x^TAx \ge 0 \) for all the \(x \in R^N\). Equivalently, all the eigenvalues of A are nonnegative.

  3. 3.

    http://www.topology-zoo.org/.

  4. 4.

    https://snap.stanford.edu/data/egonets-Facebook.html.

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  2. Borgs, C., Chayes, J., Ganesh, A., Saberi, A.: How to distribute antidote to control epidemics. Random Struct. Algorithms 37(2), 204–222 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Concatto. F., Zunino, W., Giancoli, L.A., Santiago, R., Lamb, L.C.: Genetic algorithm for epidemic mitigation by removing relationships. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 761–768. ACM (2017)

    Google Scholar 

  4. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)

    Article  Google Scholar 

  5. Deb, K., Jain, H.: Self-adaptive parent to mean-centric recombination for real-parameter optimization. Technical report, Indian Institute of Technology Kanpur (2011)

    Google Scholar 

  6. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  7. Gourdin, E., Omic, J., Van Mieghem, P.: Optimization of network protection against virus spread. In: Proceedings of the 8th International Workshop on Design of Reliable Communication Networks (DRCN), pp 659–667 (2011)

    Google Scholar 

  8. Grant, M., Boyd, S., Ye, Y.: CVX: MATLAB software for disciplined convex programming (2008)

    Google Scholar 

  9. Lahiri, M., Cebrian, M.: The genetic algorithm as a general diffusion model for social networks. In: AAAI (2010)

    Google Scholar 

  10. Lajmanovich, A., Yorke, J.A.: A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28(3), 221–236 (1976)

    Article  MathSciNet  Google Scholar 

  11. McKendrick, A.: Applications of mathematics to medical problems. Proc. Edin. Math. Soc. 14, 98–130 (1926)

    Google Scholar 

  12. Newman, M.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  13. Nowzari, C., Preciado, V.M., Pappas, G.J.: Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst. 36(1), 26–46 (2016)

    Article  MathSciNet  Google Scholar 

  14. Ottaviano, S., De Pellegrini, F., Bonaccorsi, S., Van Mieghem, P.: Optimal curing policy for epidemic spreading over a community network with heterogeneous population. Inf. Inference J. IMA (2017). https://doi.org/10.1093/imaiai/drn000

  15. Parousis-Orthodoxou, K., Vlachos, D.: Evolutionary algorithm for optimal vaccination scheme. J. Phys. Conf. Ser. 490, 012027 (2014). IOP Publishing

    Article  Google Scholar 

  16. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 99–108 (2014)

    Google Scholar 

  17. Pastor-Satorras, R., Castellano, C., Mieghem, P.V., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925–979 (2015)

    Article  MathSciNet  Google Scholar 

  18. Pizzuti, C., Socievole, A.: A genetic algorithm for finding an optimal curing strategy for epidemic spreading in weighted networks. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, 15–19 July 2018 (2018)

    Google Scholar 

  19. Prakash, B.A., Adamic, L., Iwashyna, T., Tong, H., Faloutsos, C.: Fractional immunization in networks. In: Proceedings of the SIAM Data Mining Conference, pp. 659–667 (2013)

    Google Scholar 

  20. Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.J.: Optimal vaccine allocation to control epidemic outbreaks in arbitrary networks. In: Proceedings of the 52nd IEEE Conference on Decision and Control, CDC 2013, Firenze, Italy, 10–13 December 2013, pp. 7486–7491 (2013)

    Google Scholar 

  21. Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.J.: Optimal resource allocation for network protection against spreading processes. IEEE Trans. Control Netw. Syst. 1(1), 99–108 (2014)

    Article  MathSciNet  Google Scholar 

  22. Sahneh, F.D., Scoglio, C., Van Mieghem, P.: Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Trans. Netw. 21(5), 1609–1620 (2013)

    Article  Google Scholar 

  23. Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95(2), 189–217 (2003)

    Article  MathSciNet  Google Scholar 

  24. Van Mieghem, P., Omic, J.: In-homogeneous virus spread in networks (2013). arXiv:13062588

  25. Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)

    Article  Google Scholar 

  26. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  Google Scholar 

  27. Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of International Symposium Reliable Distributed Systems (SRDS), pp. 25–34 (2003)

    Google Scholar 

  28. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440 (1998)

    Article  Google Scholar 

  29. Zhai, X., Zheng, L., Wang, J., Tan, C.W.: Optimization algorithms for epidemic evolution in broadcast networks. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1540–1545. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Pizzuti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pizzuti, C., Socievole, A. (2019). Optimal Curing Strategy Enhancement of Epidemic Processes with Self-adaptive SBX Crossover. In: Cagnoni, S., Mordonini, M., Pecori, R., Roli, A., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2018. Communications in Computer and Information Science, vol 900. Springer, Cham. https://doi.org/10.1007/978-3-030-21733-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21733-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21732-7

  • Online ISBN: 978-3-030-21733-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics