Skip to main content

The Relevance of Inorganic Nonlinear Chemical Reactions for the Origin of Life Studies

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2018)

Abstract

We discuss the fundamental role played by nonlinear inorganic chemical reactions to understand the minimal conditions for the origin of life. In particular, we propose a focus on the chemo-physical processes that modulate the interplay between self-organisation and self-assembly at the basis of important life-like functionalities. We present results about two proofs-of-concept that support this view. The first pertains the collective behaviours and patterns obtained from networks of autonomous inorganic oscillators confined in self-assembled structures and coupled via chemical communication. The second shows how a specific autocatalytic reaction can trigger conformational changes of self-assembled structures, giving rise to membrane self-division processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amoroso, R.L., Amoroso, P.J.: The fundamental limit and origin of complexity in biological systems: a new model for the origin of life. In: AIP Conference Proceedings, vol. 718, pp. 144–159. AIP (2004)

    Google Scholar 

  2. Baaske, P., Weinert, F.M., Duhr, S., Lemke, K.H., Russell, M.J., Braun, D.: Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc. Natl. Acad. Sci. 104(22), 9346–9351 (2007)

    Article  Google Scholar 

  3. Bachmann, P.A., Walde, P., Luisi, P.L., Lang, J.: Self-replicating reverse micelles and chemical autopoiesis. J. Am. Chem. Soc. 112(22), 8200–8201 (1990)

    Article  Google Scholar 

  4. Braun, D., Libchaber, A.: Thermal force approach to molecular evolution. Phys. Biol. 1(1), P1 (2004)

    Article  Google Scholar 

  5. Budroni, M.A., De Wit, A.: Dissipative structures: from reaction-diffusion to chemo-hydrodynamic patterns. Chaos: Interdisc. J. Nonlinear Sci. 27(10), 104617 (2017)

    Article  Google Scholar 

  6. Budroni, M.A., Calabrese, I., Miele, Y., Rustici, M., Marchettini, N., Rossi, F.: Control of chemical chaos through medium viscosity in a batch ferroin-catalysed Belousov-Zhabotinsky reaction. Phys. Chem. Chem. Phys. 19, 32235–32241 (2017)

    Article  Google Scholar 

  7. Budroni, M.A., Rossi, F.: A novel mechanism for in situ nucleation of spirals controlled by the interplay between phase fronts and reaction-diffusion waves in an oscillatory medium. J. Phys. Chem. C 119(17), 9411–9417 (2015)

    Article  Google Scholar 

  8. Budroni, M.A., Masia, M., Rustici, M., Marchettini, N., Volpert, V.: Bifurcations in spiral tip dynamics induced by natural convection in the Belousov-Zhabotinsky reaction. J. Chem. Phys. 130(2), 024902–8 (2009)

    Article  Google Scholar 

  9. Coveney, P.V., Swadling, J.B., Wattis, J.A., Greenwell, H.C.: Theory, modelling and simulation in origins of life studies. Chem. Soc. Rev. 41(16), 5430–5446 (2012)

    Article  Google Scholar 

  10. Fiore, M.: The synthesis of Mono-Alkyl phosphates and their derivatives: an overview of their nature, preparation and use, including synthesis under plausible prebiotic conditions. Org. Biomol. Chem. 16(17), 3068–3086 (2018)

    Article  Google Scholar 

  11. Fiore, M., Strazewski, P.: Prebiotic lipidic amphiphiles and condensing agents on the early Earth. Life 6(2), 17 (2016)

    Article  Google Scholar 

  12. Hargreaves, W.R., Mulvihill, S.J., Deamer, D.W.: Synthesis of phospholipids and membranes in prebiotic conditions. Nature 266(5597), 78 (1977)

    Article  Google Scholar 

  13. Huber, C., Eisenreich, W., Wächtershäuser, G.: Synthesis of \(\upalpha \)-amino and \(\upalpha \)-hydroxy acids under volcanic conditions: implications for the origin of life. Tetrahedron Lett. 51(7), 1069–1071 (2010)

    Article  Google Scholar 

  14. Ikari, K., et al.: Dynamics of fatty acid vesicles in response to pH stimuli. Soft Matter 11(31), 6327–6334 (2015). http://pubs.rsc.org/en/Content/ArticleLanding/2015/SM/C5SM01248A

    Article  Google Scholar 

  15. Jin, L., Kamat, N.P., Jena, S., Szostak, J.W.: Fatty acid/phospholipid blended membranes: a potential intermediate state in protocellular evolution. Small 14(15), 1704077 (2018)

    Article  Google Scholar 

  16. Kitadai, N., Kameya, M., Fujishima, K.: Origin of the reductive tricarboxylic acid (rTCA) cycle-type CO2 fixation: a perspective. Life 7(4), 39 (2017)

    Article  Google Scholar 

  17. Lagzi, I.: Self-division of a mineral oil-fatty acid droplet. Chem. Phys. Lett. 640, 1–4 (2015)

    Article  Google Scholar 

  18. Liu, Y., Sumpter, D.: Spontaneous emergence of self-replication in chemical reaction systems. arXiv preprint arXiv:1801.05872 (2018)

  19. Martins, Z., Sephton, M., Hughes, A.B.: Aminoacids, Peptides and Proteins in Organic Chemistry - Origins and Synthesis of Amino Acids, vol. 1. Wiley, Weinheim (2009)

    Google Scholar 

  20. McIlwaine, R., Kovacs, K., Scott, S.K., Taylor, A.F.: A novel route to pH oscillators. Chem. Phys. Lett. 417(1), 39–42 (2006)

    Article  Google Scholar 

  21. Miele, Y., Bánsági, T., Taylor, A.F., Stano, P., Rossi, F.: Engineering enzyme-driven dynamic behaviour in lipid vesicles. In: Rossi, F., Mavelli, F., Stano, P., Caivano, D. (eds.) WIVACE 2015. CCIS, vol. 587, pp. 197–208. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32695-5_18

    Chapter  Google Scholar 

  22. Miller, S.L.: A production of aminoacids under possible primitive earth conditions. Science, New Ser. 117(3046), 528–529 (1953). http://www.jstor.org/stable/1680569

    Article  Google Scholar 

  23. Nicolis, G., Prigogine, I.: Self-organization in Nonequilibrium Systems. Wiley, New York (1977)

    MATH  Google Scholar 

  24. Nooner, D., Gibert, J., Gelpi, E., Oro’, J.: Closed system fischer-tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. Geochimica Et Cosmochimica Acta 40(8), 915–924 (1976)

    Article  Google Scholar 

  25. Noyes, R.M., Field, R., Koros, E.: Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations. J. Am. Chem. Soc. 94(4), 1394–1395 (1972)

    Article  Google Scholar 

  26. Paul, A.: Observations of the effect of anionic, cationic, neutral, and zwitterionic surfactants on the Belousov-Zhabotinsky reaction. J. Phys. Chem. B 109(19), 9639–9644 (2005)

    Article  Google Scholar 

  27. Peterlin, P., Arrigler, V., Kogej, K., Svetina, S., Walde, P.: Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Chem. Phys. Lipids 159(2), 67–76 (2009)

    Article  Google Scholar 

  28. Ristori, S., Rossi, F., Biosa, G., Marchettini, N., Rustici, M., Tiezzi, E.: Interplay between the Belousov-Zhabotinsky reaction-diffusion system and biomimetic matrices. Chem. Phys. Lett. 436, 175–178 (2007)

    Article  Google Scholar 

  29. Rossi, F., Budroni, M.A., Marchettini, N., Cutietta, L., Rustici, M., Turco Liveri, M.L.: Chaotic dynamics in an unstirred ferroin catalyzed Belousov-Zhabotinsky reaction. Chem. Phys. Lett. 480(4–6), 322–326 (2009)

    Article  Google Scholar 

  30. Rossi, F., Liveri, M.L.T.: Chemical self-organization in self-assembling biomimetic systems. Ecol. Model. 220(16), 1857–1864 (2009)

    Article  Google Scholar 

  31. Rossi, F., Ristori, S., Marchettini, N., Pantani, O.L.: Functionalized clay microparticles as catalysts for chemical oscillators. J. Phys. Chem. C 118(42), 24389–24396 (2014)

    Article  Google Scholar 

  32. Rossi, F., Ristori, S., Rustici, M., Marchettini, N., Tiezzi, E.: Dynamics of pattern formation in biomimetic systems. J. Theor. Biol. 255(4), 404–412 (2008)

    Article  MathSciNet  Google Scholar 

  33. Rossi, F., Torbensen, K., Ristori, S., Abou-Hassan, A.: Signal transduction and communication through model membranes in networks of coupled chemical oscillators. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds.) WIVACE 2017. CCIS, vol. 830, pp. 16–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78658-2_2

    Chapter  Google Scholar 

  34. Rossi, F., Varsalona, R., Marchettini, N., Turco Liveri, M.L.: Control of spontaneous spiral formation in a zwitterionic micellar medium. Soft Matter 7, 9498 (2011)

    Article  Google Scholar 

  35. Rossi, F., et al.: Activatory coupling among oscillating droplets produced in microfluidic based devices. Int. J. Unconventional Comput. 11(1), 23–36 (2015)

    MathSciNet  Google Scholar 

  36. Roy, D., Cambre, J.N., Sumerlin, B.S.: Future perspectives and recent advances in stimuli-responsive materials. Progr. Polym. Sci. 35(1), 278–301 (2010)

    Article  Google Scholar 

  37. Ruiz-Mirazo, K., Briones, C., de la Escosura, A.: Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114(1), 285–366 (2013)

    Article  Google Scholar 

  38. Sciascia, L., Rossi, F., Sbriziolo, C., Liveri, M.L.T., Varsalona, R.: Oscillatory dynamics of the Belousov-Zhabotinsky system in the presence of a self-assembling nonionic polymer. Role of the reactants concentration. Phys. Chem. Chem. Phys. 12(37), 11674–11682 (2010)

    Article  Google Scholar 

  39. Scott, S.K.: Chemical Chaos. Oxford University Press, Oxford (1993)

    Google Scholar 

  40. Scott, S.K.: Oscillations, Waves, and Chaos in Chemical Kinetics. Oxford University Press, Oxford (1994)

    Google Scholar 

  41. Stano, P., D’Aguanno, E., Bolz, J., Fahr, A., Luisi, P.L.: A remarkable self-organization process as the origin of primitive functional cells. Angewandte Chemie International Edition 52(50), 13397–13400 (2013)

    Article  Google Scholar 

  42. Stano, P., Mavelli, F.: Protocells models in origin of life and synthetic biology. Life 5(4), 1700–1702 (2015)

    Article  Google Scholar 

  43. Szostak, J., Bartel, D., Luisi, P.: Synthesizing life. Nature 409(6818), 387–390 (2001)

    Article  Google Scholar 

  44. Takeoka, Y., Watanabe, M., Yoshida, R.: Self-sustaining peristaltic motion on the surface of a porous gel. J. Am. Chem. Soc. 125(44), 13320–13321 (2003). http://pubs.acs.org/doi/abs/10.1021/ja036904c

    Article  Google Scholar 

  45. Taylor, A.F.: Mechanism and phenomenology of an oscillating chemical reaction. Progr. React. Kinet. Mech. 27(4), 247–325 (2002)

    Article  Google Scholar 

  46. Taylor, A.F., Tinsley, M.R., Wang, F., Huang, Z., Showalter, K.: Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science 323(5914), 614–617 (2009)

    Article  Google Scholar 

  47. Toiya, M., González-Ochoa, H.O., Vanag, V.K., Fraden, S., Epstein, I.R.: Synchronization of chemical micro-oscillators. J. Phys. Chem. Lett. 1(8), 1241–1246 (2010)

    Article  Google Scholar 

  48. Tomasi, R., et al.: Chemical communication between liposomes encapsulating a chemical oscillatory reaction. Chem. Sci. 5(5), 1854–1859 (2014)

    Article  Google Scholar 

  49. Torbensen, K., Ristori, S., Rossi, F., Abou-Hassan, A.: Tuning the chemical communication of oscillating microdroplets by means of membrane composition. J. Phys. Chem. C 121(24), 13256–13264 (2017)

    Article  Google Scholar 

  50. Torbensen, K., Rossi, F., Pantani, O.L., Ristori, S., Abou-Hassan, A.: Interaction of the Belousov-Zhabotinsky reaction with phospholipid engineered membranes. J. Phys. Chem. B 119(32), 10224–10230 (2015)

    Article  Google Scholar 

  51. Torbensen, K., Rossi, F., Ristori, S., Abou-Hassan, A.: Chemical communication and dynamics of droplet emulsions in networks of Belousov-Zhabotinsky micro-oscillators produced by microfluidics. Lab Chip 17(7), 1179–1189 (2017)

    Article  Google Scholar 

  52. Varela, F.G., Maturana, H.R., Uribe, R.: Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5(4), 187–196 (1974)

    Article  Google Scholar 

  53. Zhu, T.F., Szostak, J.W.: Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131(15), 5705–5713 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miele, Y., Medveczky, Z., Lagzi, I., Budroni, M.A., Rossi, F. (2019). The Relevance of Inorganic Nonlinear Chemical Reactions for the Origin of Life Studies. In: Cagnoni, S., Mordonini, M., Pecori, R., Roli, A., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2018. Communications in Computer and Information Science, vol 900. Springer, Cham. https://doi.org/10.1007/978-3-030-21733-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21733-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21732-7

  • Online ISBN: 978-3-030-21733-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics