Skip to main content

Label-Free Pump–Probe Nanoscopy

  • Chapter
  • First Online:
Label-Free Super-Resolution Microscopy

Abstract

In the last few decades fluorescence microscopy has been the most widely used microscopy technique and much effort has been put into the development of advanced super-resolution fluorescence microscopy techniques to circumvent the diffraction limit. Despite their well-established benefits, these techniques have to rely on the photo-physical properties of fluorescent molecules to obtain the desired contrast and spatial resolution. The labeling procedure may cause unwanted alterations in the sample. With the advent of ultrashort-pulsed laser sources, it became possible to better explore novel non-fluorescent-based contrast mechanisms that rely solely on intrinsic properties of the molecules of interest and which led to the development of label-free microscopy approaches. In this chapter, the imaging capabilities of absorption-based pump–probe microscopy are presented. This technique explores the ultrafast dynamic properties of the sample with high spatial and temporal resolution , as well as high sensitivity and chemical specificity. Two pulses, a pump and a probe, with a proper spatial and temporal overlap are used. The pump is absorbed, inducing a measurable change in the sample carrier population, which is then monitored by a delayed probe pulse. The development of new label-free approaches also represents a key challenge for the exploration of super-resolution approaches in non-fluorescence-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.W. Boyd, Nonlinear Optics (2003)

    Google Scholar 

  2. P. Bianchini, A. Diaspro, Three-dimensional (3D) backward and forward second harmonic generation (SHG) microscopy of biological tissues. J. Biophotonics 1(6), 443–450 (2008)

    Article  Google Scholar 

  3. W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21(11), 1369–77 (2003)

    Article  Google Scholar 

  4. H. Chen, H. Wang, M.N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K.K. Buhman, J.-X. Cheng, A multimodal platform for nonlinear optical microscopy and microspectroscopy. Opt. Express 17(3), 1282–1290 (2009)

    Article  ADS  Google Scholar 

  5. T. Meyer, M. Schmitt, B. Dietzek, J. Popp, Accumulating advantages, reducing limitations: multimodal nonlinear imaging in biomedical sciences—the synergy of multiple contrast mechanisms. J. Biophotonics 6(11–12), 887–904 (2013)

    Article  Google Scholar 

  6. A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, C. Usai, Multi-photon excitation microscopy. Biomed. Eng. Online 5(1), 36 (2006)

    Article  Google Scholar 

  7. L. Wei, W. Min, Pump-probe optical microscopy for imaging nonfluorescent chromophores. Anal. Bioanal. Chem. 403(8), 2197–2202 (2012)

    Article  Google Scholar 

  8. M.C. Fischer, J.W. Wilson, F.E. Robles, W.S. Warren, Invited review article: pump-probe microscopy. Rev. Sci. Instrum. 87(3) (2016)

    Article  ADS  Google Scholar 

  9. A. Diaspro, G. Chirico, M. Collini, Two-photon fluorescence excitation and related techniques in biological microscopy. Q. Rev. Biophys. 38(2), 97–166 (2005)

    Article  Google Scholar 

  10. R.L. Sutherland, Handbook of Nonlinear Optics, vol. 36(3) (1997)

    Google Scholar 

  11. M. Göppert‐Mayer, M. Göppert-Mayer, Über elementarakte mit zwei quantensprüngen [Elementary processes with two quantum transitions]. Ann. Phys. (1931)

    Google Scholar 

  12. P.-T. Dong, J.-X. Cheng, Pump–probe microscopy: theory, instrumentation, and applications. Spectroscopy 32(4), 2–11 (2017)

    MathSciNet  Google Scholar 

  13. D. Fu, T.E. Matthews, T. Ye, I.R. Piletic, W.S. Warren, Label-free in vivo optical imaging of microvasculature and oxygenation level. J. Biomed. Opt. 13(4), 040503 (2008)

    Article  ADS  Google Scholar 

  14. G. Porter, Flash photolysis and spectroscopy. A new method for the study of free radical reactions. Proc. R. Soc. A Math. Phys. Eng. Sci. 200(1061), 284–300 (1950)

    Google Scholar 

  15. G. Porter, M.R. Topp, Nanosecond flash photolysis and the absorption spectra of excited singlet states. Nature 220(5173), 1228–1229 (1968)

    Article  ADS  Google Scholar 

  16. G. Porter, M.R. Topp, Nanosecond flash photolysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 315(1521), 163–184 (1970)

    Article  ADS  Google Scholar 

  17. G.V. Hartland, Ultrafast studies of single semiconductor and metal nanostructures through transient absorption microscopy. Chem. Sci. 1(3), 303–309 (2010)

    Article  Google Scholar 

  18. T. Virgili, G. Grancini, E. Molotokaite, I. Suarez-Lopez, S.K. Rajendran, A. Liscio, V. Palermo, G. Lanzani, D. Polli, G. Cerullo, Confocal ultrafast pump–probe spectroscopy: a new technique to explore nanoscale composites. Nanoscale 4(7), 2219 (2012)

    Article  ADS  Google Scholar 

  19. J.X. Cheng, X.S. Xie, Coherent Raman Scattering Microscopy (2013)

    Google Scholar 

  20. A. Beeby, Pump-probe laser spectroscopy, in An Introduction to Laser Spectroscopy (Springer US, 2002), pp. 105–137

    Google Scholar 

  21. M. Seo, S. Boubanga-Tombet, J. Yoo, Z. Ku, A.V. Gin, S.T. Picraux, S.R.J. Brueck, A.J. Taylor, R.P. Prasankumar, Ultrafast optical wide field microscopy. Opt. Express 21(7), 8763 (2013)

    Article  ADS  Google Scholar 

  22. M.A. Digman, V.R. Caiolfa, M. Zamai, E. Gratton, The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. (2008)

    Google Scholar 

  23. F.E. Robles, J.W. Wilson, M.C. Fischer, W.S. Warren, Adapting phasor analysis for nonlinear pump-probe microscopy. Opt. Express 20(15), 858908 (2013)

    Google Scholar 

  24. C.Y. Dong, P.T. So, T. French, E. Gratton, Fluorescence lifetime imaging by asynchronous pump-probe microscopy. Biophys. J. 69(6), 2234–2242 (1995)

    Article  Google Scholar 

  25. C. Buehler, C.Y. Dong, P.T.C. So, T. French, E. Gratton, Time-resolved polarization imaging by pump-probe (Stimulated Emission) fluorescence microscopy. Biophys. J. 79(July), 536–549 (2000)

    Article  ADS  Google Scholar 

  26. D. Fu, T. Ye, T.E. Matthews, G. Yurtsever, W.S. Warren, Two-color, two-photon, and excited-state absorption microscopy. J. Biomed. Opt. 12(5), 054004 (2007)

    Article  ADS  Google Scholar 

  27. D. Fu, T. Ye, T.E. Matthews, G. Yurtsever, L. Hong, J. D. Simon, W.S. Warren, Two-color excited-state absorption imaging of melanins, in Photonic Therapeutics and Diagnostics III, ed. by N. Kollias, B. Choi, H. Zeng, R.S. Malek, B.J. Wong, J.F.R. Ilgner, K.W. Gregory, G.J. Tearney, H. Hirschberg, S.J. Madsen, vol. 6424 (International Society for Optics and Photonics, 2007), p. 642402

    Google Scholar 

  28. D. Davydova, A. de la Cadena, D. Akimov, B. Dietzek, Transient absorption microscopy: Advances in chemical imaging of photoinduced dynamics. Laser Photonics Rev. 10(1), 62–81 (2016)

    Article  ADS  Google Scholar 

  29. Z. Guo, N. Zhou, O.F. Williams, J. Hu, W. You, A.M. Moran, Imaging carrier diffusion in perovskites with a diffractive optic-based transient absorption microscope. J. Phys. Chem. C 122(19), 10650–10656 (2018)

    Article  Google Scholar 

  30. Y. Jung, M.N. Slipchenko, C.H. Liu, A.E. Ribbe, Z. Zhong, C. Yang, J.-X.X. Cheng, Fast detection of the metallic state of individual single-walled carbon nanotubes using a transient-absorption optical microscope. Phys. Rev. Lett. 105(21), 1–4 (2010)

    Article  Google Scholar 

  31. Y. Wan, Z. Guo, T. Zhu, S. Yan, J. Johnson, L. Huang, Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat. Chem. 7(10), 785–792 (2015)

    Article  Google Scholar 

  32. M.M. Gabriel, J.R. Kirschbrown, J.D. Christesen, C.W. Pinion, D.F. Zigler, E.M. Grumstrup, B.P. Mehl, E.E.M. Cating, J.F. Cahoon, J.M. Papanikolas, Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump-probe microscopy. Nano Lett. 13(3), 1336–1340 (2013)

    Article  ADS  Google Scholar 

  33. S.S. Lo, T.A. Major, N. Petchsang, L. Huang, M.K. Kuno, G.V. Hartland, Charge carrier trapping and acoustic phonon modes in single CdTe nanowires. ACS Nano 6(6), 5274–5282 (2012)

    Article  Google Scholar 

  34. C.Y. Wong, S.B. Penwell, B.L. Cotts, R. Noriega, H. Wu, N.S. Ginsberg, Revealing exciton dynamics in a small-molecule organic semiconducting film with subdomain transient absorption microscopy. J. Phys. Chem. C 117(42), 22111–22122 (2013)

    Article  Google Scholar 

  35. D. Davydova, A. De La Cadena, S. Demmler, J. Rothhardt, J. Limpert, T. Pascher, D. Akimov, B. Dietzek, Ultrafast transient absorption microscopy: study of excited state dynamics in PtOEP crystals. Chem. Phys. 464, 69–77 (2016)

    Article  Google Scholar 

  36. S. Chong, W. Min, X.S. Xie, Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1(23), 3316–3322 (2010)

    Article  Google Scholar 

  37. Q. Cui, F. Ceballos, N. Kumar, H. Zhao, Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano 8(3), 2970–2976 (2014)

    Article  Google Scholar 

  38. Z. Guo, J.S.S. Manser, Y. Wan, P.V.V. Kamat, L. Huang, Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. Commun. 6(1), 1–8 (2015)

    ADS  Google Scholar 

  39. Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, L. Huang, Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science (80–.). 356(6333), 59–62 (2017)

    Article  ADS  Google Scholar 

  40. L. Tong, Y. Liu, B.D. Dolash, Y. Jung, M.N. Slipchenko, D.E. Bergstrom, J.-X. Cheng, Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy. Nat. Nanotechnol. 7(1), 56–61 (2012)

    Article  ADS  Google Scholar 

  41. T. Chen, F. Lu, A.M. Streets, P. Fei, J. Quan, Y. Huang, Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy. Nanoscale 5(11), 4701–4705 (2013)

    Article  ADS  Google Scholar 

  42. T. Chen, S. Chen, J. Zhou, D. Liang, X. Chen, Y. Huang, Transient absorption microscopy of gold nanorods as spectrally orthogonal labels in live cells. Nanoscale 6(18), 10536–10539 (2014)

    Article  ADS  Google Scholar 

  43. L. Zhang, S. Shen, Z. Liu, M. Ji, Label-free, quantitative imaging of MoS2-nanosheets in live cells with simultaneous stimulated Raman scattering and transient absorption microscopy. Adv. Biosyst. 1(4), 1700013 (2017)

    Article  Google Scholar 

  44. J. Liu, J.M.K. Irudayaraj, Non-fluorescent quantification of single mRNA with transient absorption microscopy. Nanoscale 8(46), 19242–19248 (2016)

    Article  Google Scholar 

  45. E. Malic, A. Knorr, Graphene and Carbon Nanotubes: Ultrafast Relaxation Dynamics and Optics (Wiley-VCH Verlag GmbH & Co, KGaA, 2013)

    Book  Google Scholar 

  46. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science (80–.). 320(5881), 1308 (2008)

    Article  ADS  Google Scholar 

  47. K.F. Mak, J. Shan, T.F. Heinz, Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons. Phys. Rev. Lett. (2011)

    Google Scholar 

  48. E. Hendry, P.J. Hale, J. Moger, A.K. Savchenko, S.A. Mikhailov, Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105(9), 1–4 (2010)

    Article  Google Scholar 

  49. J.M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M.G. Spencer, Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett. 92(4), (2008)

    Article  ADS  Google Scholar 

  50. M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J.P. Rabe, C. Ropers, A. Knorr, T. Elsaesser, Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B Condens. Matter Mater. Phys. 83(15), 1–4 (2011)

    Google Scholar 

  51. J. Li, W. Zhang, T. Chung, M.N. Slipchenko, Y.P. Chen, J.-X. Cheng, C. Yang, Highly sensitive transient absorption imaging of graphene and graphene oxide in living cells and circulating blood. Sci. Rep. 5(February), 12394 (2015)

    Article  ADS  Google Scholar 

  52. H. Patel, R.W. Havener, L. Brown, Y. Liang, L. Yang, J. Park, M.W. Graham, Tunable optical excitations in twisted bilayer graphene form strongly bound excitons. Nano Lett. 15(9), 5932–5937 (2015)

    Article  ADS  Google Scholar 

  53. K.-C.C. Huang, J. McCall, P. Wang, C.-S.S. Liao, G. Eakins, J.-X.X. Cheng, C. Yang, High-speed spectroscopic transient absorption imaging of defects in graphene. Nano Lett. 18(2), 1489–1497 (2018)

    Article  ADS  Google Scholar 

  54. P. Bianchini, K. Korobchevskaya, G. Zanini, A. Diaspro, Pump-probe nanoscopy by means of transient absorption saturation, in 2018 20th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2018), pp. 1–4

    Google Scholar 

  55. R.W. Newson, J. Dean, B. Schmidt, H.M. van Driel, Ultrafast carrier kinetics in exfoliated graphene and thin graphite films. Opt. Express 17(4), 2326 (2009)

    Article  ADS  Google Scholar 

  56. P.J. Hale, S.M. Hornett, J. Moger, D.W. Horsell, E. Hendry, Hot phonon decay in supported and suspended exfoliated graphene. Phys. Rev. B Condens. Matter Mater. Phys. 83(12), 4–7 (2011)

    Google Scholar 

  57. D. Brida, A. Tomadin, C. Manzoni, Y.J. Kim, A. Lombardo, S. Milana, R.R. Nair, K.S. Novoselov, A.C. Ferrari, G. Cerullo, M. Polini, Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4(May), 1–9 (1AD)

    Google Scholar 

  58. S. Kumar, M. Anija, N. Kamaraju, K.S. Vasu, K.S. Subrahmanyam, A.K. Sood, C.N.R. Rao, Femtosecond carrier dynamics and saturable absorption in graphene suspensions. Appl. Phys. Lett. 95(19), 2007–2010 (2009)

    Article  Google Scholar 

  59. J. Shang, L. Ma, J. Li, W. Ai, T. Yu, G.G. Gurzadyan, Femtosecond pump-probe spectroscopy of graphene oxide in water. J. Phys. D. Appl. Phys. 47(9) (2014)

    Article  ADS  Google Scholar 

  60. L. Huang, G.V. Hartland, L.Q. Chu, Luxmi, R.M. Feenstra, C. Lian, K. Tahy, H. Xing, Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene. Nano Lett. 10(4), 1308–1313 (2010)

    Google Scholar 

  61. B. Gao, G. Hartland, T. Fang, M. Kelly, D. Jena, H. Xing, L. Huang, Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy. Nano Lett. 11(8), 3184–3189 (2011)

    Article  ADS  Google Scholar 

  62. G. Grancini, N. Martino, M. Bianchi, L.G. Rizzi, V. Russo, A. Li Bassi, C.S. Casari, A. Petrozza, R. Sordan, G. Lanzani, Ultrafast spectroscopic imaging of exfoliated graphene. Phys. Status Solidi Basic Res. 249(12), 2497–2499 (2012)

    Article  ADS  Google Scholar 

  63. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.H. Xu, D. Tang, K.P. Loh, Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 4(3), 297–307 (2011)

    Article  Google Scholar 

  64. V.I. Klimov, Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58(1), 635–673 (2007)

    Article  ADS  Google Scholar 

  65. F.T. Vasko, Saturation of interband absorption in graphene. Phys. Rev. B Condens. Matter Mater. Phys. 82(24), 1–6 (2010)

    Google Scholar 

  66. W. Min, S. Lu, S. Chong, R. Roy, G.R. Holtom, X.S. Xie, X. Sunney Xie, Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461(7267), 1105–1109 (2009)

    Article  ADS  Google Scholar 

  67. P.-Y. Lin, S.-S. Lee, C.-S. Chang, F.-J. Kao, Long working distance fluorescence lifetime imaging with stimulated emission and electronic time delay. Opt. Express 20(10), 11445 (2012)

    Article  ADS  Google Scholar 

  68. F. Dake, Y. Taki, Time-domain fluorescence lifetime imaging by nonlinear fluorescence microscopy constructed of a pump-probe setup with two-wavelength laser pulses. Appl. Opt. 57(4), 757 (2018)

    Article  ADS  Google Scholar 

  69. F. Dake, H. Yazawa, Experimental assessment of fluorescence microscopy signal enhancement by stimulated emission. Opt. Rev. 24(5), 642–646 (2017)

    Article  Google Scholar 

  70. T.E. Matthews, I.R. Piletic, M.A. Selim, M.J. Simpson, W.S. Warren, Pump-probe imaging differentiates melanoma from melanocytic nevi. Sci. Transl. Med. 3(71) (2011)

    Article  Google Scholar 

  71. J.W. Wilson, S. Degan, M.A. Selim, J.Y. Zhang, W.S. Warren, In vivo pump-probe microscopy of melanoma and pigmented lesions, vol. 8226 (2012), p. 822602

    Google Scholar 

  72. T. Chen, Y. Huang, Label-free transient absorption microscopy for red blood cell flow velocity measurement in vivo. Anal. Chem. 89(19), 10120–10123 (2017)

    Article  Google Scholar 

  73. A.J. Chen, X. Yuan, J. Li, P. Dong, I. Hamza, J.-X. Cheng, Label-free imaging of heme dynamics in living organisms by transient absorption microscopy. Anal. Chem. acs.analchem.7b05046 (2018)

    Google Scholar 

  74. T.E. Villafana, J.K. Delaney, W.S. Warren, M.C. Fischer, High-resolution, three-dimensional imaging of pigments and support in paper and textiles. J. Cult. Herit. 20, 583–588 (2016)

    Article  Google Scholar 

  75. P. Samineni, A. de Cruz, T.E. Villafaña, W.S. Warren, M.C. Fischer, Pump-probe imaging of historical pigments used in paintings. Opt. Lett. 37(8), 1310–1312 (2012)

    Article  ADS  Google Scholar 

  76. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. für Mikroskopische Anat. 9(1), 413–418 (1873)

    Article  Google Scholar 

  77. D.B. Murphy M.W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging, 2nd edn. (2012)

    Google Scholar 

  78. C.J.R. Sheppard, A. Choudhury, Image formation in the scanning microscope. Opt. Acta Int. J. Opt. 24(10), 1051–1073 (1977)

    Article  ADS  Google Scholar 

  79. S. Hell, E.H.K. Stelzer, Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A (1992)

    Google Scholar 

  80. S. Hell, E.H.K. Stelzer, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt. Commun. (1992)

    Google Scholar 

  81. Gustafsson, Agard, Sedat, I5 M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195(1), 10–16 (1999)

    Google Scholar 

  82. M.G.L. Gustafsson, D.A. Agard, J.W. Sedat, Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses, in Three-Dimensional Microscopy: Image Acquisition and Processing II, vol. 2412, ed. by T. Wilson, C.J. Cogswell(International Society for Optics and Photonics, 1995), pp. 147–156

    Google Scholar 

  83. M.G.L. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198(Pt 2), 82–7 (2000)

    Google Scholar 

  84. E. Betzig, J.K. Trautman, T.D. Harris, J.S. Weiner, R.L. Kostelak, Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science (80–.). 251(5000), 1468–1470 (1991)

    Article  ADS  Google Scholar 

  85. W.E. Moerner, L. Kador, Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. (1989)

    Google Scholar 

  86. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science (2006)

    Google Scholar 

  87. S.W. Hell, Fluorescence nanoscopy: breaking the diffraction barrier by the RESOLFT concept, in Nanobiotechnology (2005)

    Google Scholar 

  88. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. (1994)

    Google Scholar 

  89. P. Bianchini, C. Peres, M. Oneto, S. Galiani, G. Vicidomini, A. Diaspro, STED nanoscopy: a glimpse into the future. Cell Tissue Res. 360(1), 143–150 (2015)

    Article  Google Scholar 

  90. G. Vicidomini, P. Bianchini, A. Diaspro, STED super-resolved microscopy. Nat. Methods 15(3), 173–182 (2018)

    Article  Google Scholar 

  91. F. Göttfert, C.A. Wurm, V. Mueller, S. Berning, V.C. Cordes, A. Honigmann, S.W. Hell, Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys. J. (2013)

    Google Scholar 

  92. B. Harke, J. Keller, C.K. Ullal, V. Westphal, A. Schönle, S.W. Hell, Resolution scaling in STED microscopy. Opt. Express 16(6), 4154 (2008)

    Article  ADS  Google Scholar 

  93. S.W. Hell, Microscopy and its focal switch. Nat. Methods 6(1), 24–32 (2009)

    Article  Google Scholar 

  94. S.W. Hell, Toward fluorescence nanoscopy. Nat. Biotechnol. 21(11), 1347–55 (2003)

    Article  Google Scholar 

  95. W. Liu, H. Niu, Diffraction barrier breakthrough in coherent anti-stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion. Phys. Rev. A At. Mol. Opt. Phys. 83(2), 1–5 (2011)

    Google Scholar 

  96. C. Cleff, P. Groß, C. Fallnich, H.L. Offerhaus, J.L. Herek, K. Kruse, W.P. Beeker, C.J. Lee, K.J. Boller, Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy. Phys. Rev. A At. Mol. Opt. Phys. 87(3), 1–9 (2013)

    Google Scholar 

  97. C. Cleff, P. Groß, C. Fallnich, H.L. Offerhaus, J.L. Herek, K. Kruse, W.P. Beeker, C.J. Lee, K.-J. Boller, Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy. Phys. Rev. A 86(2), 023825 (2012)

    Article  ADS  Google Scholar 

  98. W.R. Silva, C.T. Graefe, R.R. Frontiera, Toward label-free super-resolution microscopy. ACS Photonics 3(1), 79–86 (2016)

    Article  Google Scholar 

  99. D. Kim, D.S. Choi, J. Kwon, S.-H. Shim, H. Rhee, M. Cho, Selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering. J. Phys. Chem. Lett., 6118–6123 (2017)

    Article  Google Scholar 

  100. P. Wang, M.N. Slipchenko, J. Mitchell, C. Yang, E.O. Potma, X. Xu, J.-X.X. Cheng, Far-field imaging of non-fluorescent species with subdiffraction resolution. Nat. Photonics 7(6), 449–453 (2013)

    Article  ADS  Google Scholar 

  101. C. Silien, N. Liu, N. Hendaoui, S.A.M. Tofail, A. Peremans, A framework for far-field infrared absorption microscopy beyond the diffraction limit. Opt. Express 20(28), 29694–704 (2012)

    Article  ADS  Google Scholar 

  102. I. Pita, N. Hendaoui, N. Liu, M. Kumbham, S.A.M. Tofail, A. Peremans, C. Silien, High resolution imaging with differential infrared absorption micro-spectroscopy. Opt. Express 21(22), 25632 (2013)

    Article  ADS  Google Scholar 

  103. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, P. Bianchini, Strategies to maximize the performance of a STED microscope. Opt. Express 20(7), 7362 (2012)

    Article  ADS  Google Scholar 

  104. E.S. Massaro, A.H. Hill, E.M. Grumstrup, Super-resolution structured pump-probe microscopy. ACS Photonics 3(4), 501–506 (2016)

    Article  Google Scholar 

  105. H. Dehez, M. Piché, Y. De Koninck, Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging. Opt. Express 21(13), 15912 (2013)

    Article  ADS  Google Scholar 

  106. S. You, C. Kuang, Z. Rong, X. Liu, Eliminating deformations in fluorescence emission difference microscopy. Opt. Express 22(21), 26375 (2014)

    Article  ADS  Google Scholar 

  107. K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, P. Bianchini, Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement. Sci. Rep. 6(April), 25816 (2016)

    Article  ADS  Google Scholar 

  108. N. Liu, M. Kumbham, I. Pita, Y. Guo, P. Bianchini, A. Diaspro, S.A.M. Tofail, A. Peremans, C. Silien, Far-field subdiffraction imaging of semiconductors using nonlinear transient absorption differential microscopy. ACS Photonics 3(3), 478–485 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Kseniya Korobchevskaya, Colin Sheppard, Amira El Merhie, Silvia Dante, Antonio Esaù Del Rio Castillo, Camilla Coletti (Fondazione Istituto Italiano di Tecnologia, Genova, Italy), and Fumihiro Dake (Nikon Corporation, Yokohama, Japan) for the scientific discussion; Eileen Sheppard for proofreading the chapter and the Nikon Imaging Center at the Fondazione Istituto Italiano di Tecnologia for help with light microscopy. This work was partially funded by the European Community’s Seventh Framework Programme (FP7/20012-2015) under grant agreement no. 280804 in the LANIR project framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Bianchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianchini, P., Zanini, G., Diaspro, A. (2019). Label-Free Pump–Probe Nanoscopy. In: Astratov, V. (eds) Label-Free Super-Resolution Microscopy. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-21722-8_7

Download citation

Publish with us

Policies and ethics