Skip to main content

Label-Free, Ultrahigh-Speed, Direct Imaging and Tracking of Bionanoparticles in Live Cells by Using Coherent Brightfield Microscopy

  • Chapter
  • First Online:
Label-Free Super-Resolution Microscopy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2316 Accesses

Abstract

Many important biological phenomena, ranging from cell signaling to viral infection, are accomplished by transportation of biological substances encapsulated in native nano-sized particles. Thermal fluctuation drives nanoparticles through cellular environments; this movement is facilitated by their small size. To understand how a specific cell function can be achieved through random collisions, it is useful to know the interactions between single particles and the local environment, as determined by measuring cell dynamics at high spatial and temporal resolutions . In this chapter, a simple yet powerful wide-field optical technique, coherent brightfield (COBRI) microscopy , is presented. COBRI microscopy detects linearly scattered light from a nanoparticle through imaging-based interferometry, which enables direct observation of small biological nanoparticles in live cells without labels. Proper image post-processing further improves the detection sensitivity of small particles by removing the scattering background of cell structures. COBRI microscopy can easily operate at a high speed due to its wide-field nature and stable, indefinite scattering signal. Using COBRI, the dynamics of single virus particles and cell vesicles in live cells can be successfully captured at a microsecond temporal resolution and nanometer spatial precision in three dimensions. The ultrahigh spatiotemporal resolution and shot-noise-limited sensitivity of COBRI microscopy provide an opportunity to study the biophysics and biochemistry of live cells at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.D. Vale, Intracellular transport using microtubule-based motors. Annu. Rev. Cell Biol. 3(1), 347–378 (1987)

    Article  Google Scholar 

  2. J. Suh, D. Wirtz, J. Hanes, Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl. Acad. Sci. 100(7), 3878–3882 (2003)

    Article  ADS  Google Scholar 

  3. N. Hirokawa, S. Niwa, Y. Tanaka, Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68(4), 610–638 (2010)

    Article  Google Scholar 

  4. B.W. Guzik, L.S.B. Goldstein, Microtubule-dependent transport in neurons: steps towards an understanding of regulation, function and dysfunction. Curr. Opin. Cell Biol. 16(4), 443–450 (2004)

    Article  Google Scholar 

  5. N. Segev, Coordination of intracellular transport steps by GTPases. Semin. Cell Dev. Biol. 22(1), 33–38 (2011)

    Article  Google Scholar 

  6. N. Hirokawa et al., Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682 (2009)

    Article  Google Scholar 

  7. D. Mudhakir, H. Harashima, Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J. 11(1), 65 (2009)

    Article  Google Scholar 

  8. R.D. Vale, The molecular motor toolbox for intracellular transport. Cell 112(4), 467–480 (2003)

    Article  Google Scholar 

  9. D.J. Stephens, V.J. Allan, Light microscopy techniques for live cell imaging. Science 300(5616), 82–86 (2003)

    Article  ADS  Google Scholar 

  10. P.L. Leopold et al., Fluorescent virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells. Hum. Gene Ther. 9(3), 367–378 (1998)

    Article  Google Scholar 

  11. I. Wacker et al., Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J. Cell Sci. 110(13), 1453–1463 (1997)

    Google Scholar 

  12. M. Lakadamyali et al., Visualizing infection of individual influenza viruses. Proc. Natl. Acad. Sci. U.S.A. 100(16), 9280–9285 (2003)

    Article  ADS  Google Scholar 

  13. K. Jaqaman et al., Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695 (2008)

    Article  Google Scholar 

  14. N. Ruthardt, D.C. Lamb, C. Bräuchle, Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol. Ther. 19(7), 1199–1211 (2011)

    Article  Google Scholar 

  15. S. Manley, J.M. Gillette, J. Lippincott-Schwartz, Chapter 5 Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics, in Methods in Enzymology, ed. by N.G. Walter (Academic Press, 2010), pp. 109–120

    Google Scholar 

  16. Z. Liu, Luke D. Lavis, E. Betzig, Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58(4), 644–659 (2015)

    Article  Google Scholar 

  17. C. Dietrich et al., Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284 (2002)

    Article  ADS  Google Scholar 

  18. H. Isojima et al., Direct observation of intermediate states during the stepping motion of kinesin-1. Nat. Chem. Biol. 12, 290–297 (2016)

    Article  Google Scholar 

  19. H. Ueno et al., Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys. J. 98(9), 2014–2023 (2010)

    Article  ADS  Google Scholar 

  20. J.L. Martin et al., Anatomy of F1-ATPase powered rotation. Proc. Natl. Acad. Sci. 111(10), 3715–3720 (2014)

    Article  ADS  Google Scholar 

  21. S. Faez et al., Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber. ACS Nano 9(12), 12349–12357 (2015)

    Article  Google Scholar 

  22. S. Enoki et al., Label-free single-particle imaging of the influenza virus by objective-type total internal reflection dark-field microscopy. PLoS ONE 7(11), e49208 (2012)

    Article  ADS  Google Scholar 

  23. B. Agnarsson et al., Evanescent light-scattering microscopy for label-free interfacial imaging: from single sub-100 nm vesicles to live cells. ACS Nano 9(12), 11849–11862 (2015)

    Article  Google Scholar 

  24. E. McLeod et al., High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy. ACS Nano 9(3), 3265–3273 (2015)

    Article  Google Scholar 

  25. P. Kukura et al., High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6, 923–927 (2009)

    Article  Google Scholar 

  26. S.M. Scherr et al., Real-time capture and visualization of individual viruses in complex media. ACS Nano 10(2), 2827–2833 (2016)

    Article  Google Scholar 

  27. G.G. Daaboul et al., Digital detection of exosomes by interferometric imaging. Sci. Rep. 6, 37246 (2016)

    Article  ADS  Google Scholar 

  28. H.-M. Wu et al., Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci. Rep. 6, 20542 (2016)

    Article  ADS  Google Scholar 

  29. Y.-H. Lin, W.-L. Chang, C.-L. Hsieh, Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds. Opt. Express 22(8), 9159–9170 (2014)

    Article  ADS  Google Scholar 

  30. Y. Yang et al., Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique. Small 11(24), 2878–2884 (2015)

    Article  Google Scholar 

  31. Y.-F. Huang et al., Coherent brightfield microscopy provides the spatiotemporal resolution to study early stage viral infection in live cells. ACS Nano 11(3), 2575–2585 (2017)

    Article  Google Scholar 

  32. Y.-F. Huang et al., Label-free, ultrahigh-speed, 3D observation of bidirectional and correlated intracellular cargo transport by coherent brightfield microscopy. Nanoscale 9, 6567–6574 (2017)

    Article  Google Scholar 

  33. C. Kural et al., Tracking melanosomes inside a cell to study molecular motors and their interaction. Proc. Natl. Acad. Sci. 104(13), 5378–5382 (2007)

    Article  ADS  Google Scholar 

  34. J.-S. Park et al., Label-free and live cell imaging by interferometric scattering microscopy. Chem. Sci. 9(10), 2690–2697 (2018)

    Article  Google Scholar 

  35. C.-Y. Cheng, Y.-H. Liao, C.-L. Hsieh, High-speed imaging and tracking of very small single nanoparticles by contrast enhanced microscopy. Nanoscale. 11, 568–577 (2019)

    Article  Google Scholar 

  36. C.-L. Hsieh, Label-free, ultrasensitive, ultrahigh-speed scattering-based interferometric imaging. Opt. Commun. 422, 69–74 (2018)

    Article  ADS  Google Scholar 

  37. J. Hwang, W.E. Moerner, Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam. Opt. Commun. 280(2), 487–491 (2007)

    Article  ADS  Google Scholar 

  38. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004)

    Google Scholar 

  39. M.K. Kim, Digital holographic microscopy, in Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, New York, 2011), pp. 149–190

    Chapter  Google Scholar 

  40. V. Mico, Z. Zalevsky, J. García, Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution. Opt. Commun. 281(17), 4273–4281 (2008)

    Article  ADS  Google Scholar 

  41. J. Garcia-Sucerquia et al., Digital in-line holographic microscopy. Appl. Opt. 45(5), 836–850 (2006)

    Article  ADS  Google Scholar 

  42. J. Ortega-Arroyo, P. Kukura, Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys. Chem. Chem. Phys. 14(45), 15625–15636 (2012)

    Article  Google Scholar 

  43. K. Lindfors et al., Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93(3), 037401 (2004)

    Article  ADS  Google Scholar 

  44. V. Jacobsen et al., Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Opt. Express 14, 405–414 (2006)

    Article  ADS  Google Scholar 

  45. M. Krishnan et al., Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467(7316), 692–695 (2010)

    Article  ADS  Google Scholar 

  46. J. Ortega Arroyo, D. Cole, P. Kukura, Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging. Nat. Protocols 11(4), 617–633 (2016)

    Article  Google Scholar 

  47. P.P. Laissue et al., Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657 (2017)

    Article  Google Scholar 

  48. X. Huang et al., Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol. 36, 451 (2018)

    Article  Google Scholar 

  49. M. Weigert et al., Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15(12), 1090–1097 (2018)

    Article  Google Scholar 

  50. C.-Y. Cheng, C.-L. Hsieh, Background estimation and correction for high-precision localization microscopy. ACS Photonics 4(7), 1730–1739 (2017)

    Article  Google Scholar 

  51. M. Piliarik, V. Sandoghdar, Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5, 4495 (2014)

    Article  ADS  Google Scholar 

  52. D. Cole et al., Label-free single-molecule imaging with numerical-aperture-shaped interferometric scattering microscopy. ACS Photonics 4(2), 211–216 (2017)

    Article  MathSciNet  Google Scholar 

  53. G. Young et al., Quantitative mass imaging of single biological macromolecules. Science 360(6387), 423–427 (2018)

    Article  ADS  Google Scholar 

  54. C.L. Hsieh et al., Tracking single particles on supported lipid membranes: multimobility diffusion and nanoscopic confinement. J. Phys. Chem. B 118(6), 1545–1554 (2014)

    Article  Google Scholar 

  55. B. Huang, M. Bates, X. Zhuang, Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78(1), 993–1016 (2009)

    Article  Google Scholar 

  56. O. Avci et al., Pupil function engineering for enhanced nanoparticle visibility in wide-field interferometric microscopy. Optica 4(2), 247–254 (2017)

    Article  MathSciNet  Google Scholar 

  57. Q.D. Pham et al., Digital holographic microscope with low-frequency attenuation filter for position measurement of a nanoparticle. Opt. Lett. 37(19), 4119–4121 (2012)

    Article  ADS  Google Scholar 

  58. K. Goto, Y. Hayasaki, Three-dimensional motion detection of a 20-nm gold nanoparticle using twilight-field digital holography with coherence regulation. Opt. Lett. 40(14), 3344–3347 (2015)

    Article  ADS  Google Scholar 

  59. J. Ortega Arroyo et al., Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14(4), 2065–2070 (2014)

    Article  ADS  Google Scholar 

  60. M.P. McDonald et al., Visualizing single-cell secretion dynamics with single-protein sensitivity. Nano Lett. 18(1), 513–519 (2018)

    Article  ADS  Google Scholar 

  61. H. Liu, C. Dong, J. Ren, Tempo-spatially resolved scattering correlation spectroscopy under dark-field illumination and its application to investigate dynamic behaviors of gold nanoparticles in live cells. J. Am. Chem. Soc. 136(7), 2775–2785 (2014)

    Article  Google Scholar 

  62. R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum Press, New York, 1985)

    Book  Google Scholar 

  63. J.-Y. Tinevez et al., Chapter 15 A quantitative method for measuring phototoxicity of a live cell imaging microscope, in Methods in Enzymology, ed. by P.M. Conn (Academic Press, 2012), pp. 291–309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Lung Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hsieh, CL. (2019). Label-Free, Ultrahigh-Speed, Direct Imaging and Tracking of Bionanoparticles in Live Cells by Using Coherent Brightfield Microscopy. In: Astratov, V. (eds) Label-Free Super-Resolution Microscopy. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-21722-8_3

Download citation

Publish with us

Policies and ethics