Skip to main content

Microsphere-Assisted Interference Microscopy

  • Chapter
  • First Online:
Label-Free Super-Resolution Microscopy

Abstract

Microsphere-assisted microscopy is a new two-dimensional super- resolution imaging technique, which allows the diffraction limit to be overcome by introducing a transparent microsphere in a classical optical microscope. This super-resolution technique makes it possible to reach a lateral resolution of up to one hundred nanometres. Furthermore, microsphere-assisted microscopy distinguishes itself from others by being able to perform label-free and full-field acquisitions and requires only slight modifications of a classical white light microscope. Extended to three-dimensional surface measurement through interference microscopy which has the advantage of providing a high-axial sensitivity, super-resolution topography or the volume distribution of objects can thus be reconstructed depending on the interference method employed. This chapter first presents a brief history of optical microscopy and recent advances in optical nanoscopy. Then, the super-resolution phenomenon through microspheres is introduced and its performance is described. Finally, the combination of optical interferometry with nanoscopy based on microspheres, giving microsphere-assisted interference microscopy, is exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Rooseboom, The history of the microscope. Proc. R. Microsc. Soc. 2, 266–293 (1967)

    Google Scholar 

  2. J. Zuylen, The microscopes of Antoni van Leeuwenhoek. J. Microsc. 121(3), 309–328 (1981)

    Article  Google Scholar 

  3. R. Hooke, Micrographia (Royal Society, London, 1665)

    Google Scholar 

  4. E. Verdet, Leçons d’optique physique (Victor Masson et fils, Paris, 1869)

    Google Scholar 

  5. E. Abbe, Beiträge zur theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9, 413–418 (1873)

    Article  Google Scholar 

  6. H. von Helmholtz, H.E. Fripp, On the limits of the optical capacity of the microscope. Mon. Microsc. J. 16(1), 15–39 (1876)

    Google Scholar 

  7. E. Abbe, On the estimation of aperture in the microscope. J. R. Microsc. Soc. 1(3), 388–423 (1881)

    Article  Google Scholar 

  8. A. Köhler, Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke. Zeitschrift für wissenschaftliche Mikroskopie und für Mikroskopische Technik 10, 433–440 (1893)

    Google Scholar 

  9. J.W. Rayleigh, On the manufacture and theory of diffraction-gratings. Phil. Mag. 47(310), 81–93 (1874)

    Google Scholar 

  10. J.W. Rayleigh, On the theory of optical images, with special reference to the microscope. Phil. Mag. 42(255), 167–195 (1896)

    Article  MATH  Google Scholar 

  11. G.B. Airy, On the diffraction of an object-glass with circular aperture. Trans. Camb. Philos. Soc. 5, 283–291 (1835)

    ADS  Google Scholar 

  12. E. Abbe, On new methods for improving spherical correction, applied to the construction of wide-angled object-glasses. J. R. Microsc. Soc. 2(7), 812–824 (1879)

    Article  Google Scholar 

  13. E. Abbe, Ueber Verbesserungen des Mikroscope mit Hilfe neuer Arten optischen Glases (Sitzber. Jen. Ges. Med, Naturwiss, 1886)

    Google Scholar 

  14. C.M. Sparrow, On spectroscopic resolving power. Astrophys. J. 44, 76–87 (1916)

    Article  ADS  Google Scholar 

  15. W.V. Houston, A compound interferometer for fine structure work. Phys. Rev. 29(3), 478–484 (1927)

    Article  ADS  Google Scholar 

  16. J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill companies, 1996)

    Google Scholar 

  17. P.M. Duffieux, L’intégrale de Fourier et ses applications à l’optique (Faculté des Sciences de Besancon, 1946)

    Google Scholar 

  18. V. Ronchi, Resolving power of calculated and detected images. J. Opt. Soc. Am. 51(4), 458–460 (1961)

    Article  Google Scholar 

  19. D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College Press, London, 2003)

    Google Scholar 

  20. Editorial, Beyond the diffraction limit. Nature Photon. 3, 361 (2009)

    Google Scholar 

  21. A. Neice, Methods and limitations of subwavelength imaging. Adv. Imaging Electron Phys. 163, 117–140 (2010)

    Article  Google Scholar 

  22. M. Ehrenberg, The Nobel Prize in Chemistry 2014. Press Release, Royal Swedish Academy of Sciences (Published 8 Octo 2014, Accessed 03 July 2019 10:35:35). http://www.nobelprize.org/

  23. P.C. Montgomery, A. Leong-Hoi, Emerging optical nanoscopy techniques. Nanotechnol. Sci. Appl. 8, 31–44 (2015)

    Article  Google Scholar 

  24. P.C. Montgomery, A. Leong-Hoi et al., From superresolution to nanodetection: overview of far field optical nanoscopy techniques for nanostructures. J. Phys. Conf. Ser. 682, 012010 (2016)

    Article  Google Scholar 

  25. E.H. Synge, A suggested method for extending microscopic resolution into ultra microscopic region. Phil. Mag. 6(35), 356–362 (1928)

    Google Scholar 

  26. E.H. Synge, An application of piezo-electricity to microscopy. Phil. Mag. 13(83), 297–300 (1932)

    Google Scholar 

  27. E.A. Ash, G. Nicholls, Super-resolution aperture scanning microscope. Nature 237, 510–512 (1972)

    Article  ADS  Google Scholar 

  28. D.W. Pohl, W. Denk et al., Optical stethoscopy: image recording with resolution \(\lambda \)/20. Appl. Phys. Lett. 44(7), 651 (1984)

    Article  ADS  Google Scholar 

  29. G.A. Massey, Microscopy and pattern generation with scanned evanescent waves. Appl. Opt. 23(5), 658–660 (1984)

    Article  ADS  Google Scholar 

  30. U.T. Dürig, D.W. Pohl et al., Near-field optical-scanning microscopy. J. Appl. Phys. 59(10), 3318 (1986)

    Article  ADS  Google Scholar 

  31. U.C. Fischer, U.T. Dürig et al., Near-field optical scanning microscopy in reflection. Appl. Phys. Lett. 52(4), 249 (1988)

    Article  ADS  Google Scholar 

  32. J.M. Vigoureux, C. Girard et al., General principles of scanning tunneling optical microscopy. Opt. Lett. 14(19), 1039–1941 (1989)

    Article  ADS  Google Scholar 

  33. J.M. Guerra, Photon tunneling microscopy. Appl. Opt. 29(26), 3741–3752 (1990)

    Article  ADS  Google Scholar 

  34. T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 437, 55–75 (1948)

    Article  MATH  Google Scholar 

  35. T. Ha, T. Enderle et al., Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. U.S.A. 93(13), 6264–6268 (1996)

    Article  ADS  Google Scholar 

  36. C. Girard, D. Courjon, Model for scanning tunneling optical microscopy: a microscopic self-consistent approach. Phys. Rev. B 42(15), 9340 (1990)

    Article  ADS  Google Scholar 

  37. C. Girard, M. Spajer, Model for reflection near field optical microscopy. Appl. Opt. 29(26), 3726–3733 (1990)

    Article  ADS  Google Scholar 

  38. Y. Oshikane, T. Kataoka et al., Observation of nanostructure by scanning near-field optical microscope with small sphere probe. Sci. Technol. Adv. Mater. 8(3), 181–185 (2007)

    Article  Google Scholar 

  39. M. Minsky, Microscopy apparatus. U.S. Patent 3,013,467 (1961)

    Google Scholar 

  40. H. Goldmann, Spaltlampenphotographie und -photometrie. Ophthalmologica 98, 257–270 (1940)

    Article  Google Scholar 

  41. H. Naora, Microspectrophotometry and cytochemical analysis of nucleic acids. Science 114(2959), 279–280 (1951)

    Article  ADS  Google Scholar 

  42. C.J.R. Sheppard, Y. Gong, Improvement in axial resolution by interference confocal microscopy. Optik 87(3), 129–132 (1991)

    Google Scholar 

  43. S. Hell, E.H.K. Stelzer, A 4Pi confocal microscope has an improved axial resolution. in Presentation at the 4th International Conference on Confocal Microscopy (Amsterdam, 1992)

    Google Scholar 

  44. S. Hell, E.H.K. Stelzer, Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 9(12), 2159–2166 (1992)

    Article  ADS  Google Scholar 

  45. C. Cremer, Verfahren zur Darstellung bzw. Modifikation von Objekt-Details, deren Abmessungen au\(\beta \)erhalb der sichtbaren Wellenlängen liegen. DE pattent DE2116521 (1971)

    Google Scholar 

  46. S. Lecler, Y. Takakura, P. Meyrueis, Properties of a three-dimensional photonic jet. Opt. Lett. 30(19), 2641–2643 (2005)

    Article  ADS  Google Scholar 

  47. A.V. Itagi, W.A. Challener, Optics of photonic nanojets. J. Opt. Soc. Am. A 22(12), 2847–2858 (2005)

    Article  ADS  Google Scholar 

  48. Z. Chen, A. Taflove, V. Backman, Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express 12(7), 1214–1220 (2004)

    Article  ADS  Google Scholar 

  49. J. Kasim, T. Yu et al., Near-field Raman imaging using optically trapped dielectric microsphere. Opt. Express 16(11), 7976–7984 (2008)

    Article  ADS  Google Scholar 

  50. P.K. Upputuri, Z.-B. Wen et al., Super-resolution photoacoustic microscopy using photonic nanojets: a simulation study. J. Biomed. Opt. 19(11), 116003 (2014)

    Article  ADS  Google Scholar 

  51. W. Lukosz, M. Marchand, Optischen Abbildung unter Überschreitung der beugungsbedingten Auflösungsgrenze. Opt. Acta. 10(3), 241–255 (1963)

    Article  ADS  Google Scholar 

  52. P.C. Sun, E.N. Leith, Superresolution by spatial-temporal encoding methods. Appl. Opt. 31(23), 4857–4862 (1992)

    Article  ADS  Google Scholar 

  53. M. Saxena, G. Eluru, S.S. Gorthi, Structured illumination microscopy. Adv. Opt. Photon. 7(2), 241–275 (2015)

    Article  Google Scholar 

  54. R. Heintzmann, C. Cremer, Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. in Proceedings of the SPIE, SPIE BiOS Europe, vol. 3568 Stockholm (19 Jan 1999) pp. 185–196

    Google Scholar 

  55. M.G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc. 198(2), 82–87 (2000)

    Article  Google Scholar 

  56. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov. Phys. Usp. 10(4), 509–514 (1968)

    Article  ADS  Google Scholar 

  57. J.B. Pendry, A.J. Holden et al., Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76(25), 4773–4776 (1996)

    Article  ADS  Google Scholar 

  58. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966 (2000)

    Article  ADS  Google Scholar 

  59. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008)

    Article  ADS  Google Scholar 

  60. X.C. Tong, Advanced Materials for Integrated Optical Waveguides (Springer International, 2014)

    Google Scholar 

  61. R.A. Shelby, D.R. Smith et al., Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)

    Article  ADS  Google Scholar 

  62. D.R. Smith, W.J. Padilla et al., Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)

    Article  ADS  Google Scholar 

  63. D.R. Smith, D. Schurig et al., Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82(10), 1506 (2003)

    Article  ADS  Google Scholar 

  64. N. Fang, H. Lee et al., Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721), 534–537 (2005)

    Article  ADS  Google Scholar 

  65. R.J. Blaikie, D.O.S. Melville, M.M. Alkaisi, Super-resolution near-field lithography using planar silver lenses: a review of recent developments. Microelectron. Eng. 83(4), 723–729 (2006)

    Article  Google Scholar 

  66. W. Srituravanich, N. Fang et al., Plasmonic nanolithography. Nano Lett. 4(6), 1085–1088 (2004)

    Article  ADS  Google Scholar 

  67. D.R. Smith, D. Schurig, Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90(7), 077405 (2003)

    Article  ADS  Google Scholar 

  68. Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14(18), 8247–8256 (2006)

    Article  ADS  Google Scholar 

  69. V.A. Okhonin, Method of investigating specimen microstructure. U.S. Patent 1,374,922 (1991)

    Google Scholar 

  70. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19(11), 780–782 (1994)

    Article  ADS  Google Scholar 

  71. T.A. Klar, S.W. Hell, Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24(14), 954–956 (1999)

    Article  ADS  Google Scholar 

  72. S.W. Hell, Far-field optical nanoscopy. Science 316(5828), 1153–1158 (2007)

    Article  ADS  Google Scholar 

  73. R.M. Dickson, A.B. Cubitt et al., On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997)

    Article  ADS  Google Scholar 

  74. E. Cuche, F. Bevilacqua, C. Depeursinge, Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24(5), 291–293 (1999)

    Article  ADS  Google Scholar 

  75. Y. Park, W. Choi et al., Speckle-field digital holographic microscopy. Opt. Express 17(15), 12285–12292 (2009)

    Article  ADS  Google Scholar 

  76. R. Dändliker, K. Weiss, Reconstruction of the three-dimensional refractive index from scattered waves. Opt. Commun. 1(7), 323–328 (1970)

    Article  ADS  Google Scholar 

  77. V. Lauer, New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope. J. Microsc. 205(2), 165–176 (2002)

    Article  MathSciNet  Google Scholar 

  78. M. Debailleul, V. Georges et al., High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples. Opt. Lett. 34(1), 79–81 (2009)

    Article  ADS  Google Scholar 

  79. O. Haeberlé, K. Belkebir et al., Tomographic diffractive microscopy: basics, techniques and perspectives. J. Mod. Opt. 57(9), 686–699 (2010)

    Article  ADS  MATH  Google Scholar 

  80. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  81. W. Jueptner, U. Schnars, Digital Holography Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, Berlin, 2005)

    Google Scholar 

  82. Y. Cotte, F. Toy et al., Marker-free phase nanoscopy. Nat. Photon. 7, 113–117 (2013)

    Article  ADS  Google Scholar 

  83. E.J. Ambrose, A surface contact microscope for the study of cell movements. Nature 178, 1194 (1956)

    Article  ADS  Google Scholar 

  84. D. Axelrod, Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89(1), 141–145 (1981)

    Article  Google Scholar 

  85. T. Funatsu, Y. Harada et al., Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995)

    Article  ADS  Google Scholar 

  86. D. Courjon, K. Sarayeddine, M. Spajer, Scanning tunneling optical microscopy. Opt. Commun. 71(1), 23–28 (1989)

    Article  ADS  Google Scholar 

  87. P.C. Montgomery, Nanoscopy: nanometre defect analysis by computer aided 3D optical imaging. Nanotechnology 1(1), 54 (1990)

    Article  ADS  Google Scholar 

  88. J.P. Fillard, P.C. Montgomery et al., High resolution and sensitivity infrared tomography. J. Cryst. Growth 103(1), 109–115 (1990)

    Article  ADS  Google Scholar 

  89. J.P. Fillard, Near Field Optics and Nanoscopy (World Scientific, Singapore, 1996)

    Google Scholar 

  90. P. Mahou, J. Vermot, E. Beaurepaire, W. Supatto, Multicolor two-photon light-sheet microscopy. Nat. Methods 11(6), 600 (2014)

    Article  Google Scholar 

  91. P.C. Montgomery, J.P. Fillard, High-resolution imaging of defects in III–V compound wafers by near-infra-red phase contrast microscopy. Electron. Lett. 25(2), 89–90 (1989)

    Article  Google Scholar 

  92. A. Ducret, M.P. Valignat et al., Wet-surface-enhanced ellipsometric contrast microscopy identifies slime as a major adhesion factor during bacterial surface motility. Proc. Natl. Acad. Sci. U.S.A. 109, 10036–10041 (2012)

    Article  ADS  Google Scholar 

  93. R. Attota, B. Bunday, V. Vartanian, Critical dimension metrology by through-focus scanning optical microscopy beyond the 22 nm node. Appl. Phys. Lett. 102(22), 222107 (2013)

    Article  ADS  Google Scholar 

  94. Z. Wang, W. Guo et al., Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2, 218 (2011)

    Article  ADS  Google Scholar 

  95. A. Darafsheh, N.I. Limberopoulos et al., Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Appl. Phys. Lett. 104(6), 061117 (2014)

    Article  ADS  Google Scholar 

  96. K.W. Allen, N. Farahi et al., Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers. Opt. Express 23(19), 24484–24496 (2015)

    Article  ADS  Google Scholar 

  97. K.W. Allen, N. Farahi et al., Super-resolution by microspheres and fibers—Myth or reality? in IEEE ICTON Proceedings of the IEEE (Budapest, 5 July 2015), pp. 1–4

    Google Scholar 

  98. C.Y. Liu, W.-C. Lo, Large-area super-resolution optical imaging by using core-shell microfibers. Opt. Commun. 399, 104–111 (2017)

    Article  ADS  Google Scholar 

  99. J.N. Monks, B. Yan et al., Spider silk: mother nature’s bio-superlens. Nano Lett. 16(9), 5842–5845 (2016)

    Article  ADS  Google Scholar 

  100. S. Yang, F. Wang et al., Influence of the photonic nanojet of microspheres on microsphere imaging. Opt. Express 25(22), 27551–27558 (2017)

    Article  ADS  Google Scholar 

  101. S. Lecler, S. Perrin et al., Photonic jet lens. Sci. Rep. 9, 4725 (2019)

    Google Scholar 

  102. Y. Ben-Aryeh, Increase of resolution by use of microspheres related to complex Snell’s law. J. Opt. Soc. Am. A 33(12), 2284–2288 (2016)

    Article  ADS  Google Scholar 

  103. K.W. Allen, N. Farahi et al., Super-resolution microscopy by movable thin-films with embedded microspheres. Ann. Phys. 527(7), 513–522 (2015)

    Article  MathSciNet  Google Scholar 

  104. A. Heifetz, J.J. Simpson et al., Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere. Opt. Express 15(25), 17334–17342 (2007)

    Article  ADS  Google Scholar 

  105. V.N. Astratov, A.V. Maslov et al., Fundamental limits of super-resolution microscopy by dielectric microspheres and microfibers. in Proceedings of the SPIE 97210K, SPIE BiOS, vol. 9721, San Francisco (22 April 2016)

    Google Scholar 

  106. S. Zhou, Y. Deng et al., Effects of whispering gallery mode in microsphere super-resolution imaging. Appl. Phys. B 123, 236 (2017)

    Article  ADS  Google Scholar 

  107. Y. Duan, G. Barbastathis, B. Zhang, Classical imaging theory of a microlens with super-resolution. Opt. Lett. 38(16), 2988–2990 (2013)

    Article  ADS  Google Scholar 

  108. A.V. Maslov, V.N. Astratov, Imaging of sub-wavelength structures radiating coherently near microspheres. Appl. Phys. Lett. 108(5), 051104 (2016)

    Article  ADS  Google Scholar 

  109. S. Perrin, S. Lecler et al., Role of coherence in microsphere-assisted nanoscopy. in Proceedings of the SPIE, 103300V, SPIE Optical Metrology, vol. 10330, Munich (26 June 2017)

    Google Scholar 

  110. A.V. Maslov, V.N. Astratov, Theoretical resolution of contact microspherical nanoscopy. in Proceedings of the IEEE, IEEE ICTON, pp. 1–4, Girona (2 July 2017)

    Google Scholar 

  111. A. Darafsheh, C. Guardiola el al., Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt. Lett. 40(1), 5–8 (2015)

    Article  ADS  Google Scholar 

  112. Y. Yan, L. Li et al., Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum. ACS Nano 8(2), 1809–1816 (2014)

    Article  Google Scholar 

  113. B. Yan, Z. Wang et al., Superlensing microscope objective lens. Appl. Opt. Commun. 56(11), 3142–3147 (2017)

    Article  ADS  Google Scholar 

  114. C.J.R. Sheppard, Resolution and super-resolution. Microsc. Res. Tech. 80(6), 590–598 (2017)

    Article  Google Scholar 

  115. M. Duocastella, F. Tantussi et al., Combination of scanning probe technology with photonic nanojets. Sci. Rep. 7, 3474 (2017)

    Article  ADS  Google Scholar 

  116. S. Perrin, H. Li et al., Illumination conditions in microsphere-assisted microscopy. J. Microsc. 274(1), 69–75 (2019)

    Article  Google Scholar 

  117. A. Brettin, C.L. McGinnis et al., Quantification of resolution in microspherical nanoscopy with biological objects. in Proceedings of the IEEE, IEEE NAECON, pp. 189–192, Dayton (27 June 2017)

    Google Scholar 

  118. X. Hao, C. Kuang et al., Microsphere based microscope with optical super-resolution capability. Appl. Phys. Lett. 99(20), 203102 (2011)

    Article  ADS  Google Scholar 

  119. H. Yang, M.A.M. Gijs, Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures. Microelectron. Eng. 143, 86–90 (2015)

    Article  Google Scholar 

  120. Q. Lin, D. Wang et al., Super-resolution imaging by microsphere-assisted optical microscopy. Opt. Quant. Electron. 48, 557 (2016)

    Article  Google Scholar 

  121. G. Huszka, H. Yang, M.A.M. Gijs, Microsphere-based super-resolution scanning optical microscope. Opt. Express 25(13), 15079–15092 (2017)

    Article  ADS  Google Scholar 

  122. S.L. Stanescu1, S. Vilain et al., Imaging with the super-resolution microsphere amplifying lens (SMAL) nanoscope. J. Phys. Conf. Ser. 902, 012014 (2017)

    Google Scholar 

  123. L. Chen, Y. Zhou et al., Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron. Adv. 1(1), 170001 (2018)

    Article  Google Scholar 

  124. F. Wang, L. Liu et al., Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nat. Commun. 7, 13748 (2016)

    Article  ADS  Google Scholar 

  125. J. Li, W. Liu et al., Swimming microrobot optical nanoscopy. Nano Lett. 16(10), 6604–6609 (2016)

    Article  ADS  Google Scholar 

  126. K.W. Allen, N. Farahi et al., Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices. in Proceedings of the IEEE, IEEE NAECON, pp. 50–52 Dayton (24 June 2014)

    Google Scholar 

  127. K.W. Allen, N. Farahi et al., Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis. Ann. Phys. 527(7), 513–522 (2015)

    Article  MathSciNet  Google Scholar 

  128. G. Huszka, M.A.M. Gijs, Turning a normal microscope into a super-resolution instrument using a scanning microlens array. Sci. Rep. 8, 601 (2018)

    Article  ADS  Google Scholar 

  129. X. Hao, C. Kuang et al., Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion. Appl. Phys. Lett. 112(2), 023101 (2018)

    Article  ADS  Google Scholar 

  130. A. Darafsheh, Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy. Opt. Lett. 42(4), 735–738 (2017)

    Article  ADS  Google Scholar 

  131. Y. Zhou, Y. Tang et al., Effects of immersion depth on super-resolution properties of index different microsphere-assisted nanoimaging. Appl. Phys. Express 11(3), 032501 (2018)

    Article  ADS  Google Scholar 

  132. H.S.S. Lai, F. Wang et al., Super-resolution real imaging in microsphere-assisted microscopy. PLoS ONE 11(10), e0165194 (2016)

    Article  Google Scholar 

  133. R. Ye, Y.-H. Ye et al., Experimental imaging properties of immersion microscale spherical lenses. Sci. Rep. 4, 3769 (2014)

    Article  Google Scholar 

  134. P.K. Upputuri, M. Pramanik, Microsphere-aided optical microscopy and its applications for super-resolution imaging. Opt. Cummun. 404, 32–41 (2017)

    Article  ADS  Google Scholar 

  135. H. Yang, N. Moullan et al., Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small 10(9), 1712–1718 (2014)

    Article  Google Scholar 

  136. Y. Zhou, Y. Tang et al., Contrast enhancement of microsphere-assisted super-resolution imaging. Appl. Phys. Express 10(8), 082501 (2017)

    Article  ADS  Google Scholar 

  137. S. Perrin, H. Li et al., Transmission microsphere-assisted dark-field microscopy. Phys. Status Solidi RRL. 13(2), 1800445 (2019)

    Article  ADS  Google Scholar 

  138. L. Li, W. Guo et al., Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci. Appl. 2, e104 (2013)

    Article  Google Scholar 

  139. P. de Groot, Principles of interference microscopy for the measurement of surface topography. Adv. Opt. Photonics 7(1), 1–65 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  140. D. Huang, E.A. Swanson et al., Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  ADS  Google Scholar 

  141. F. Charriere, A. Marian et al., Cell refractive index tomography by digital holographic microscopy. Opt. Lett. 31(2), 178–180 (2006)

    Article  ADS  Google Scholar 

  142. D. Malacara, Optical Shop Testing, 3rd edn. (Wiley, New Jersey, 2007)

    Google Scholar 

  143. G. Gianto, F. Salzenstein, P.C. Montgomery, Comparison of envelope detection techniques in coherence scanning interferometry. Appl. Opt. 55(24), 6763–6774 (2016)

    Article  ADS  Google Scholar 

  144. E. Cuche, P. Marquet et al., Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38(34), 6994–7001 (1999)

    Article  ADS  Google Scholar 

  145. E. Cuche, P. Marquet, C. Depeursinge, Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39(23), 4070–4075 (2000)

    Article  ADS  Google Scholar 

  146. J. Kühn, T. Colomb et al., Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Opt. Express 15(12), 7231–7242 (2007)

    Article  ADS  Google Scholar 

  147. P. Lehmann, W. Xie et al., Coherence scanning and phase imaging optical interference microscopy at the lateral resolution limit. Opt. Express 26(6), 7376–7389 (2018)

    Article  ADS  Google Scholar 

  148. A. Faridian, D. Hopp et al., Nanoscale imaging using deep ultraviolet digital holographic microscopy. Opt. Express 18(13), 14159–14164 (2010)

    Article  ADS  Google Scholar 

  149. Y. Wang, S. Guo et al., Resolution enhancement phase-contrast imaging by microsphere digital holography. Opt. Commun. 366, 81–87 (2015)

    Article  ADS  Google Scholar 

  150. F. Wang, L. Liu et al., Three-dimensional super-resolution morphology by near-field assisted white-light interferometry. Sci. Rep. 6, 24703 (2016)

    Article  ADS  Google Scholar 

  151. M. Aakhte, V. Abbasian et al., Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification. Appl. Opt. 56(9), D8–D13 (2017)

    Article  Google Scholar 

  152. Q. Lin, D. Wang et al., Super-resolution quantitative phase-contrast imaging by microsphere-based digital holographic microscopy. Opt. Eng. 56(3), 034116 (2017)

    Article  ADS  Google Scholar 

  153. V. Abbasiana, E.A. Akhlaghiab et al., Digital holographic microscopy for 3D surface characterization of polymeric nanocomposites. Ultramicroscopy 185, 72–80 (2018)

    Article  Google Scholar 

  154. P. Chavel, Optical noise and temporal coherence. J. Opt. Soc. Am. 70(8), 935–943 (1980)

    Article  ADS  Google Scholar 

  155. I. Kassamakov, S. Lecler et al., 3D super-resolution optical profiling using microsphere enhanced Mirau interferometry. Sci. Rep. 7, 3683 (2017)

    Article  ADS  Google Scholar 

  156. S. Perrin, A. Leong-Hoi et al., Microsphere-assisted phase-shifting profilometry. Appl. Opt. 56(25), 7249–7255 (2017)

    Article  ADS  Google Scholar 

  157. A. Leong-Hoi, Etude des techniques de super-résolution latérale en nanoscopie et développement d’un système interférométrique nano-3D. Ph.D. thesis, (University of Strasbourg, 2016)

    Google Scholar 

  158. A. Leong-Hoi, C. Hairaye et al., High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials. Phys. Status Solidi A 215, 1700858 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the members of IPP research team of the ICube Laboratory (Strasbourg, France) for their contributions, specially A. Leong-Hoi for her PhD thesis work on super-resolution optical imaging and P. Twardowski for his useful discussions and advice. Moreover, we thank all partners who have directly or indirectly contributed to the linked associated research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephane Perrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perrin, S., Lecler, S., Montgomery, P. (2019). Microsphere-Assisted Interference Microscopy. In: Astratov, V. (eds) Label-Free Super-Resolution Microscopy. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-21722-8_17

Download citation

Publish with us

Policies and ethics