Skip to main content

Super-Resolution Microscopy Techniques Based on Plasmonics and Transformation Optics

  • Chapter
  • First Online:
Label-Free Super-Resolution Microscopy

Abstract

Traditionally the resolution of conventional optical microscopes, which rely on optical waves that propagate into the far field, has been limited because of diffraction to a value on the order of a half-wavelength of the light used. Several nonlinear optical microscopy techniques overcome this limit using photo-switching and saturation of fluorescence. Very recently it was demonstrated that considerable resolution enhancement may also be achieved in linear far-field microscopy by making use of recent progress in plasmonics, metamaterials and transformation optics. We will review theoretical foundations of these techniques and present our recent proof of principle experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.W. Pohl, D. Courjon (eds.), Near Field Optics (Kluwer Academic Publishers, Dordrecht, 1993)

    Google Scholar 

  2. S.W. Hell, Far field optical nanoscopy. Science 316, 1153–1158 (2007)

    Article  ADS  Google Scholar 

  3. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  Google Scholar 

  4. N. Fang, H. Lee, C. Sun, X. Zhang, Sub–diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  ADS  Google Scholar 

  5. D.O.S. Melville, R.J. Blaikie, Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005)

    Article  ADS  Google Scholar 

  6. I.I. Smolyaninov, J. Elliott, A. Zayats, C.C. Davis, Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons. Phys. Rev. Lett. 94, 057401 (2005)

    Article  ADS  Google Scholar 

  7. A.V. Zayats, I.I. Smolyaninov, Near-field photonics: surface plasmon polaritons and localized surface plasmons. J. Opt. A Pure Appl. Opt. 5, S16–S50 (2003)

    Article  ADS  Google Scholar 

  8. I.I. Smolyaninov, C.C. Davis, J. Elliott, G. Wurtz, A.V. Zayats, Super-resolution optical microscopy based on photonic crystal materials. Phys. Rev. B 72, 085442 (2005)

    Article  ADS  Google Scholar 

  9. S.A. Ramakrishna, J.B. Pendry, Spherical perfect lens: solutions of Maxwell’s equations for spherical geometry. Phys. Rev. B 69, 115115 (2004)

    Article  ADS  Google Scholar 

  10. Z. Jakob, L.V. Alekseyev, E. Narimanov, Optical Hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006)

    Article  ADS  Google Scholar 

  11. A. Salandrino, N. Engheta, Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006)

    Article  ADS  Google Scholar 

  12. I.I. Smolyaninov, Y.J. Hung, C.C. Davis, Magnifying superlens in the visible frequency range. Science 315, 1699–1702 (2007)

    Article  ADS  Google Scholar 

  13. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007)

    Article  ADS  Google Scholar 

  14. I.I. Smolyaninov, C.C. Davis, J. Elliott, G. Wurtz, A.V. Zayats, Digital resolution enhancement in surface plasmon microscopy. Appl. Phys. B – Lasers Opt. 84, 253–256 (2006)

    Article  ADS  Google Scholar 

  15. Z. Wang et al., Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2, 218 (2011)

    Article  ADS  Google Scholar 

  16. U. Leonhardt, Perfect imaging without negative refraction. New J. Phys. 11, 093040 (2009)

    Article  ADS  Google Scholar 

  17. J.C. Minano, Perfect imaging in a homogeneous three dimensional region. Opt. Express 14, 9627–9635 (2006)

    Article  ADS  Google Scholar 

  18. V.N. Smolyaninova, I.I. Smolyaninov, A.V. Kildishev, V.M. Shalaev, Maxwell fisheye and Eaton lenses emulated by microdroplets. Opt. Lett. 35, 3396–3398 (2010)

    Article  ADS  Google Scholar 

  19. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  20. I.I. Smolyaninov, V.N. Smolyaninova, A.V. Kildishev, V.M. Shalaev, Anisotropic metamaterials emulated by tapered waveguides: application to electromagnetic cloaking. Phys. Rev. Lett. 102, 213901 (2009)

    Article  ADS  Google Scholar 

  21. V.N. Smolyaninova, I.I. Smolyaninov, A.V. Kildishev, V.M. Shalaev, Experimental observation of the trapped rainbow. Appl. Phys. Lett. 96, 211121 (2010)

    Article  ADS  Google Scholar 

  22. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. U. Leonhardt, Optical conformal mapping. Science 312, 1777–1780 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. J.Y. Lee, B.H. Hong, W.Y. Kim, S.K. Min, Y. Kim, M.V. Jouravlev, R. Bose, K.S. Kim, I. Hwang, L.J. Kaufman, C.W. Wong, P. Kim, K.S. Kim, Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature 460, 498–501 (2009)

    Article  ADS  Google Scholar 

  25. D.R. Mason, M.V. Jouravlev, K.S. Kim, Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. Opt. Lett. 35, 2007–2009 (2010)

    Article  ADS  Google Scholar 

  26. A. Darafsheh, G.F. Walsh, L. Dal Negro, V.N. Astratov, Optical super-resolution by high-index liquid-immersed microspheres. Appl. Phys. Lett. 101, 141128 (2012)

    Article  ADS  Google Scholar 

  27. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Reed, Oxford, 1988)

    MATH  Google Scholar 

  28. V.N. Smolyaninova, H.K. Ermer, A. Piazza, D. Schaefer, I.I. Smolyaninov, Experimental demonstration of birefrigent transformation optics devices. Phys. Rev. B 87, 075406 (2013)

    Article  ADS  Google Scholar 

  29. S. Martínez-Garaot, S.-Y. Tseng, J.G. Muga, Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity. Opt. Lett. 39, 2306–2309 (2014)

    Article  ADS  Google Scholar 

  30. G.Z. Racz, N. Bamiedakis, R. Penty, Mode-selective optical sensing using asymmetric waveguide junctions. Sens. Actuators A 233, 91–97 (2015)

    Article  Google Scholar 

  31. S. Xiao, V.P. Drachev, A.V. Kildishev, X. Ni, U.K. Chettiar, H.-K. Yuan, V.M. Shalaev, Loss-free and active optical negative-index metamaterials. Nature 466, 735–738 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor I. Smolyaninov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smolyaninov, I.I., Smolyaninova, V.N. (2019). Super-Resolution Microscopy Techniques Based on Plasmonics and Transformation Optics. In: Astratov, V. (eds) Label-Free Super-Resolution Microscopy. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-21722-8_13

Download citation

Publish with us

Policies and ethics