Skip to main content

Super-Resolution Imaging Based on Nonlinear Plasmonic Scattering

  • Chapter
  • First Online:
Label-Free Super-Resolution Microscopy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2273 Accesses

Abstract

During the last two decades, the resolution limit was well overcome by manipulating nonlinearity of fluorescence emission, including on/off switching and saturation, enabling resolution below 100 nm. However, fluorescence suffers from intrinsic photo-bleaching, which aggravates with repeated excitation for on/off switching or strong incident power for achieving saturation. Therefore, it is more than desirable to develop super-resolution imaging modality based on an alternative contrast agent without bleaching, such as scattering. An attractive candidate is scattering from surface plasmon resonance (SPR) nanostructures, whose scattering intensity is particularly strong, and can be spectrally tuned by structure. In this chapter, we review recent finding of nonlinear scattering , including saturation , reverse saturation , and all-optical switching, in an isolated plasmonic nanostructure. These nonlinear behaviours have been successfully applied to imaging, bringing spatial resolution down to nearly λ/10, which is enough to resolve surface plasmon polariton in nanoscale optoelectronic devices without labelling. Potential applications range from bio-medical imaging and functional plasmonic nanostructures. Our results are expected to be a stimulating example in finding more exotic contrast agency for improving optical resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.B. Airy, On the diffraction of an object-glass with circular aperture. Trans. Camb. Philos. Soc. 5(3), 283–291 (1835)

    ADS  Google Scholar 

  2. E. Abbe, Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv für mikroskopische Anatomie 9(1), 413–418 (1873)

    Article  Google Scholar 

  3. L. Rayleigh, On the theory of optical images with special reference to microscopy. Philos. Mag. 42(255), 167–195 (1896)

    Article  Google Scholar 

  4. G. Binnig, C.F. Qate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  ADS  Google Scholar 

  5. E. Ruska, The development of the electron microscope and of electron microscopy. Angew. Chemie. 26(7), 595–706 (1987)

    Article  Google Scholar 

  6. S.W. Hell, Far-field optical nanoscopy. Science 316(5828), 1153–1158 (2007)

    Article  ADS  Google Scholar 

  7. A. Stemmer, M. Beck, R. Foilka, Widefield fluorescence microscopy with extended resolution. Histochem. Cell Biol. 130, 807–817 (2008)

    Article  Google Scholar 

  8. M. Minsky, Microscopy apparatus. US patent 3013467 (1961)

    Google Scholar 

  9. W. Denk, J. Stricker, W. Webb, Two photon laser scanning fluorescence microscopy. Science 248(4951), 73–76 (1990)

    Article  ADS  Google Scholar 

  10. W.R. Zipfel, R.M. Williams, W.W. Web, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21(11), 1369–1377 (2003)

    Article  Google Scholar 

  11. C.J. Engelbrecht, E.H.K. Stelzer, Resolution enhancement in a light-sheet-based microscope (SPIM). Opt. Lett. 31(10), 1477–1479 (2006)

    Article  ADS  Google Scholar 

  12. R.C. Dunn, Near field scanning optical microscopy. Chem. Rev. 99(10), 2891–2928 (1999)

    Article  Google Scholar 

  13. G.I. Mashanov, D. Tacon, A.E. Knight, M. Peckham, J.E. Molloy, Visualizing single molecules inside living cells using total internal reflection fluorescence. Methods 29(2), 142–152 (2003)

    Article  Google Scholar 

  14. M.G.L. Gustafsson, Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9(5), 627–634 (1999)

    Article  Google Scholar 

  15. S.W. Hell, E.H.K. Stelzer, Properties of a 4PI confocal fluorescence microscope. J. Opt. Soc. Am. A 9(12), 2159–2166 (1992)

    Article  ADS  Google Scholar 

  16. M.G.L. Gustafsson, D.A. Agard, J.W. Sedat, Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc. SPIE 2412, 147–156 (1995)

    Article  ADS  Google Scholar 

  17. M.G.L. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198(2), 82–87 (2000)

    Article  Google Scholar 

  18. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated-emission—stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19(11), 780–782 (1994)

    Article  ADS  Google Scholar 

  19. R.M. Dickson, A.B. Cubitt, R.Y. Tsien, W.E. Moerner, On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388(6640), 355–358 (1997)

    Article  ADS  Google Scholar 

  20. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)

    Article  ADS  Google Scholar 

  21. A.H. Coons, H.J. Creech, R.N. Jones, E. Berliner, The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45(3), 159–170 (1942)

    Google Scholar 

  22. D.C. Prasher, V.K. Eckenrode, W.W. Ward, F.G. Prendergast, M.J. Cormier, Primary structure of the Aequorea-victoria green-fluorescent protein. Gene 111(2), 229–233 (1992)

    Article  Google Scholar 

  23. Y.T. Chen, P.H. Lee, P.T. Shen, J. Launer, R. Oketani, K.Y. Li, Y.T. Huang, K. Masui, S. Shoji, K. Fujita, S.W. Chu, Study of nonlinear plasmonic scattering in metallic nanoparticles. ACS Photonics 3(8), 1432–1439 (2016)

    Article  Google Scholar 

  24. S.W. Chu, H.Y. Wu, Y.T. Huang, T.Y. Su, H. Lee, Y. Yonemaru, M. Yamanaka, R. Oketani, S. Kawata, S. Shoji, K. Fujita, Saturation and reverse saturation of scattering in a single plasmonic nanoparticle. ACS Photonics 1(1), 32–37 (2014)

    Article  Google Scholar 

  25. S.W. Chu, T.Y. Su, R. Oketani, Y.T. Huang, H.Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.Y. Zhuo, M.Y. Lee, S. Kawata, K. Fujita, Measurement of a saturated emission of optical radiation from gold nanoparticles: application to an ultrahigh resolution microscope. Phys. Rev. Lett. 112 (1), 017402–017404 (2014)

    Google Scholar 

  26. H.Y. Wu, Y.T. Huang, P.T. Shen, H. Lee, R. Oketani, Y. Yonemaru, M. Yamanaka, S. Shoji, K.H. Lin, C.W. Chang, S. Kawata, K. Fujita, S.W. Chu, Ultrasmall all-optical plasmonic switch and its application to super-resolution imaging. Sci. Rep. 6, 24293 (2016)

    Article  ADS  Google Scholar 

  27. K.A. Willets, A.J. Wilson, V. Sunderesan, P.B. Joshi, Super-resolution imaging and plasmonics. Chem. Rev. 117(11), 7538–7582 (2017)

    Article  Google Scholar 

  28. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photonics 6(11), 737–748 (2012)

    Article  ADS  Google Scholar 

  29. P. Zhao, N. Li, D. Astruc, State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 257(3–4), 638–665 (2013)

    Article  Google Scholar 

  30. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721), 534–537 (2005)

    Article  ADS  Google Scholar 

  31. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819), 1686-1686 (2007)

    Article  ADS  Google Scholar 

  32. H. Wang, C.S. Levin, N.J. Halas, Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J. Am. Chem. Soc. 127(43), 14992–14993 (2005)

    Article  Google Scholar 

  33. I.I. Smolyaninov, Y.J. Hung, C.C. Davis, Super-resolution optics using short-wavelength surface plasmon polaritons. J. Mod. Opt. 53(16–17), 2337–2347 (2006)

    Article  ADS  Google Scholar 

  34. F. Wei, Z. Liu, Plasmonic structured illumination microscopy. Nano Lett. 10(7), 2531–2536 (2010)

    Article  ADS  Google Scholar 

  35. T. Huang, X.X. Nancy, Multicolored nanometre-resolution mapping of single protein-ligand binding complexes using far-field photo-stable optical nanoscopy (PHOTON). Nanoscale 3(9), 3567–3572 (2011)

    Article  ADS  Google Scholar 

  36. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, S. Kawata, High-resolution confocal microscopy by saturated excitation of fluorescence. Phys. Rev. Lett. 99(22), 228105 (2007)

    Article  ADS  Google Scholar 

  37. Y. Sivan, Y. Sonnefraud, S. Keńa-Cohen, J.B. Pendry, S.A. Maier, Nanoparticle-assisted stimulated-emission-depletion nanoscopy. ACS Nano 6(6), 5291–5296 (2012)

    Article  Google Scholar 

  38. M. Yamanaka, N.I. Smith, K. Fujita, Introduction to super-resolution microscopy. Microscopy 63(3), 177–192 (2014)

    Article  Google Scholar 

  39. H. Blom, J. Widengren, Stimulated emission depletion microscopy. Chem. Rev. 117(11), 7377–7427 (2017)

    Article  Google Scholar 

  40. M. Hofmann, C. Eggeling, S. Jakobs, S.W. Hell, Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005)

    Article  ADS  Google Scholar 

  41. S.W. Hell, M. Kroug, Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit. Appl. Phys. B 60(5), 495–497 (1995)

    Article  ADS  Google Scholar 

  42. G. Deka, K. Nishida, K. Mochizuki, H.-X. Ding, K. Fujita, S.W. Chu, Resolution enhancement in deep-tissue nanoparticle imaging based on plasmonic saturated excitation microscopy. APL Photonics 3(3), 031301 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Wei Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jagadale, T.C., Chu, SW. (2019). Super-Resolution Imaging Based on Nonlinear Plasmonic Scattering. In: Astratov, V. (eds) Label-Free Super-Resolution Microscopy. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-21722-8_10

Download citation

Publish with us

Policies and ethics