Skip to main content

Markov Chain Monte Carlo and the Application to Geodetic Time Series Analysis

  • Chapter
  • First Online:
Book cover Geodetic Time Series Analysis in Earth Sciences

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

The time evolution of geophysical phenomena can be characterised by stochastic time series. The stochastic nature of the signal stems from the geophysical phenomena involved and any noise, which may be due to, e.g., un-modelled effects or measurement errors. Until the 1990s, it was usually assumed that white noise could fully characterise this noise. However, this was demonstrated to not be the case and it was proven that this assumption leads to underestimated uncertainties of the geophysical parameters inferred from the geodetic time series. Therefore, in order to fully quantify all the uncertainties as robustly as possible, it is imperative to estimate not only the deterministic but also the stochastic model parameters of the time series. In this regard, the Markov Chain Monte Carlo (MCMC) method can provide a sample of the distribution function of all parameters, including those regarding the noise, e.g., spectral index and amplitudes. After presenting the MCMC method and its implementation in our MCMC software we apply it to synthetic and real time series and perform a cross-evaluation using Maximum Likelihood Estimation (MLE) as implemented in the CATS software. Several examples as to how the MCMC method performs as a parameter estimation method for geodetic time series are given in this chapter. These include the applications to GPS position time series, superconducting gravity time series and monthly mean sea level (MSL) records, which all show very different stochastic properties. The impact of the estimated parameter uncertainties on sub-sequentially derived products is briefly demonstrated for the case of plate motion models. Finally, an evaluation of the MCMC method against the Hector method using weekly downsampled versions of the Benchmark Synthetic GNSS (BSG) time series as provided in Chap. 2 is presented separately in an appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://sideshow.jpl.nasa.gov/post/series.html.

  2. 2.

    Simon D. P. Williams, personal communication, 2012.

  3. 3.

    The software is available in http://sideshow.jpl.nasa.gov/post/series.html.

  4. 4.

    Simon D. P. Williams, personal communication, 2013.

  5. 5.

    Data available at http://www.psmsl.org/.

  6. 6.

    Data available at http://www.psmsl.org/.

References

  • Agnew, D., 1992. The time-domain behaviour of power-law noises. Geophys. Res. Lett. 19 (4), 333–336.

    Google Scholar 

  • Altamimi, Z., Métivier, L., Collilieux, X., 2012. ITRF2008 plate motion model. J. Geophys. Res. 117, B07402.

    Google Scholar 

  • Argus, D. F., Heflin, M. B., Peltzer, G., Crampe, F., Webb, F. H., 2005. Interseismic strain accumulation and anthropogenic motion in metropolitan los angeles. J. Geophys. Res. 110, B04401, https://doi.org/10.1029/2003JB002934.

  • Baart, F., van Gelder, P., de Ronde, J., van Koningsveld, M., Wouters, B., 2012. The effect of the 18.6-year lunar nodal cycle on regional sea-level rise estimates. J. Coastal Res. 28 (2), 511–516.

    Google Scholar 

  • Beutler, G., Rothacher, M., Schaer, S., Springer, T., Kouba, J., Neilan, R., 1999. The International GPS Service (IGS): an interdisciplinary Service in support of earth sciences. Adv. Space Res. 23 (4), 631–635.

    Google Scholar 

  • Blewitt, G., Lavallée, D., July 2002. Effect of annual signals on geodetic velocity. J. Geophys. Res. 107 (B7), ETG 9–1–ETG 9–11.

    Google Scholar 

  • Bloßfeld, M., Rudenko, S., Kehm, A., Panafidina, N., Müller, H., Angermann, D., Hugentobler, U., Seitz, M., 2018. Consistent estimation of geodetic parameters from slr satellite constellation measurements. J. Geodesy 92 (9), 1003–1021.

    Google Scholar 

  • Bos, M., Bastos, L., Fernandes, R., 2010. The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series. J. Geodyn. (49), 205–209.

    Google Scholar 

  • Bos, M., Fernandes, R., Williams, S., Bastos, L., December 2012. Fast error analysis of continuous GNSS observations with missing data. J. Geodesy 87, 351–360.

    Google Scholar 

  • Bradley, S. L., Milne, G. A., Teferle, F. N., Bingley, R. M., Orliac, E. J., 2009. Glacial isostatic adjustment of the british isles: New constraints from gps measurements of crustal motion. Geophys. J. Int. 178 (1), 14–22.

    Google Scholar 

  • Burgette, R., Watson, C., Church, J., White, N., Tregoning, P., Coleman, R., 2013. Characterizing and minimizing the effects of noise in tide gauge time series: relative and geocentric sea level rise around Australia. Geophys. J. Int. https://doi.org/10.1093/gji131.

  • Caporali, A., 2003. Average strain rate in the Italian crust inferred from a permanent GPS network - I. Statistical analysis of the time-series of permanent GPS stations. Geophys. J. Int. (155), 241–253.

    Google Scholar 

  • Cazenave, A., Valette, J., Boucher, C., 1992. Positioning results with DORIS on SPOT2 after first year of mission. J. Geophys. Res. 97 (B5), 7109–7119.

    Google Scholar 

  • Chambers, D., Merrifield, M., Nerem, R., 2012. Is there a 60-year oscillation in global mean sea level? Geophys. Res. Lett. 39 (https://doi.org/10.1029/2012GL052885).

  • Church, J., White, N., 2006. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 33, L01602.

    Google Scholar 

  • Douglas, B., Kearney, M., Leatherman, S., 2001. Sea Level Rise. Vol. 75. Academic Press.

    Google Scholar 

  • Dow, J., Neilan, R., Rizos, C., 2009. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geodesy 83 (3), 191–198.

    Google Scholar 

  • Dunkley, J., Bucher, M., Ferreira, P. G., Moodley, K., Skordis, C., 2005. Fast and reliable MCMC for cosmological parameter estimation. Mon. Not. R. Astron. Soc. 356, 925–936.

    Google Scholar 

  • Fernandes, R. M. S., Ambrosius, B., Noomen, R., Bastos, L., Combrinck, L., Miranda, J. M., Spakman, W., 2004. Angular velocities of nubia and somalia from continuous gps data: implications on present-day relative kinematics. Earth Planet. Sc. Lett. 222, 197–208.

    Google Scholar 

  • Gazeaux, J., Williams, S., Matt, K., Bos, M., Dach, R., Deo, M., Moore, A., Ostini, L., Petrie, E., Roggero, M., Teferle, F., Olivares, G., Webb, F., 2013. Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. J. Geophys. Res. 118 (https://doi.org/10.1002/jgrb.50152).

    Google Scholar 

  • Gilks, W. R., Richardson, S., Spiegelhalter, D., 1996. Markov Chain Monte Carlo in Practice. Chapman & Hall.

    Google Scholar 

  • Goodkind, J., 1999. The superconducting gravimeter. Rev. Sci. Instrum. 70 (11), 4131–4152.

    Google Scholar 

  • Hackl, M., Malservisi, R., Hugentobler, U., Wonnacott, R., 2011. Estimation of velocity uncertainties from GPS time series: Examples from the analysis of the South African TrigNet network. J. Geophys. Res. 116, B11404.

    Google Scholar 

  • Harrison, C., 2002. Power spectrum of sea level change over fifteen decades of frequency. Geochem. Geophys. Geosys. 3 (8), 1–17.

    Google Scholar 

  • He, X., Bos, M. S., Montillet, J. P., Fernandes, R. M. S., 2019. Investigation of the noise properties at low frequencies in long GNSS time series. J. Geodesy, 1–12.

    Google Scholar 

  • He, X., Montillet, J. P., Fernandes, R. M. S., Bos, M. S., Yu, K., Jiang, W., 2017. Review of current GPS methodologies for producing accurate time series and their error sources. J. Geodyn. 106, 12–29.

    Google Scholar 

  • Holgate, S., Matthews, A., Woodworth, P., Rickards, L., Tamisiea, M., Bradshaw, E., Foden, P., Gordon, K., Jevrejeva, S., Pugh, J., 2013. New Data Systems and Products at the Permanent Service for Mean Sea Level. J. Coastal Res. 29 (3), 493–504.

    Google Scholar 

  • Holgate, S., Woodworth, P., 2004. Evidence for enhanced coastal level rise during the 1990s. Geophys. Res. Lett. 31, L07305.

    Google Scholar 

  • Hosking, J. R. M., April 1981. Fractional differencing. Biometrika 68 (1), 165–176.

    Google Scholar 

  • Hughes, C., Williams, S., 2010. The color of sea level: Importance of spatial variations in spectral shape for assessing the significance of trends. J. Geophys. Res. 115 (https://doi.org/10.1029/2010JC006102).

  • Khan, S. A., Wahr, J., Leuliette, E., van Dam, T., Larson, K. M., Francis, O., 2008. Geodetic measurements of postglacial adjustments in greenland. J. Geophys. Res. 113. URL http://dx.doi.org/10.1029/2007JB004956.

  • Kirchner, J., 2005. Aliasing in \(1/f^{\alpha }\) noise spectra: Origins, consequences, and remedies. Phys. Rev. E 71 (066110).

    Google Scholar 

  • Klos, A., Hunegnaw, A., Teferle, F. N., Abraha, K. E., Ahmed, F., Bogusz, J., 2018a. Statistical significance of trends in zenith wet delay from re-processed gps solutions. GPS Solut. 22 (51), https://doi.org/10.1007/s10291-018-0717-y.

  • Klos, A., Olivares, G., Teferle, F. N., Hunegnaw, A., Bogusz, J., 2018b. On the combined effect of periodic signals and colored noise on velocity uncertainties. GPS Solut. 22 (1), 1.

    Google Scholar 

  • Langbein, J., 2004. Noise in two-color electronic distance meter measurements revisited. J. Geophys. Res. 109 (B04406).

    Google Scholar 

  • Langbein, J., 2008. Noise in GPS displacement measurements from Southern California and Southern Nevada. J. Geophys. Res.: Solid Earth 113, https://doi.org/10.1029/2007JB005247.

  • Langbein, J., Johnson, H., January 10 1997. Correlated errors in geodetic time series: Implications for time-dependent deformation. J. Geophys. Res. 102 (B1), 591–603.

    Google Scholar 

  • Langbein, J., Quilty, E., Breckenridge, K., 1993. Sensivity of crustal deformation instruments to changes in secular rate. Geophys. Res. Lett. 20, 85–88.

    Google Scholar 

  • Larson, K. M., Agnew, D. C., 1991. Application of the global positioning system to crustal deformation measurement 1. precision and accuracy. J. Geophys. Res. 96 (B10), 16547–16565.

    Google Scholar 

  • Lefebvre, M., Cazenave, A., Escudier, P., Biancale, R., Crétaux, J., Soudarin, L., Valette, J., 1996. Space tracking system improves accuracy of geodetic measurements. Eos Trans. Am. Geophys. Union 77 (4), 25–29.

    Google Scholar 

  • Mandelbrot, B. B., 1982. The Fractal Geometry of Nature. W.H. Freeman & Co Ltd.

    Google Scholar 

  • Mandelbrot, B. B., Ness, J. W. V., October 1968. Fractional brownian motions, fractional noises and applications. SIAM Review 10 (4), 422–437.

    Google Scholar 

  • Mao, A., Harrison, C., Dixon, T., February 1999. Noise in gps coordinate time series. J. Geophys. Res. 104 (B2), 2797–2816.

    Google Scholar 

  • Mazzotti, S., Jones, C., R.E., T., 2008. Relative and absolute sea level rise in western Canada and northwestern United States from a combined tide gauge-GPS analysis. J. Geophys. Res. 113 (C11019), https://doi.org/10.1029/2008JC004835.

  • Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E., June 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21 (6), 1087–1093.

    Google Scholar 

  • Milne, G. A., Davies, J. L., Mitrovica, J. X., Scherneck, H. G., Johansson, J. M., Vermeer, M., Koivula, H., 2001. Space-geodetic constraints on glacial isostatic adjustment in fennoscandia. Science 291 (23 March 2001), 2381–2385.

    Google Scholar 

  • Montillet, J.-P., Melbourne, T. I., Szeliga, W. M., 2018. GPS vertical land motion corrections to sea-level rise estimates in the Pacific Northwest. J.Geophys. Res.: Oceans 123 (2), 1196–1212.

    Google Scholar 

  • Nahmani, S., Bock, O., Bouin, M.-N., Santamaría-Gómez, A., Boy, J.-P., Collilieux, X., Métivier, L., Panet, I., Genthon, P., de Linage, C., Wöppelmann, G., 2012. Hydrological deformation induced by the West African Monsoon: Comparison of GPS, GRACE and loading models. J. Geophys. Res.: Solid Earth 117 (B5), B05409.

    Google Scholar 

  • Nielsen, K., Khan, S. A., Spada, G., Wahr, J., Bevis, M., Liu, L., van Dam, T., 2013. Vertical and horizontal surface displacements near Jakobshavn Isbrae driven by melt-induced and dynamic ice loss. J. Geophys. Res.: Solid Earth 118 (4), 1837–1844.

    Google Scholar 

  • Nothnagel, A., Artz, T., Behrend, D., Malkin, Z., 2017. International vlbi service for geodesy and astrometry. J. Geodesy 91 (7), 711–721.

    Google Scholar 

  • Olivares, G., Teferle, F., May 2013. A bayesian monte carlo markov chain method for parameter estimation of fractional differenced gaussian processes. IEEE Trans. Signal Process. 61 (9), 2405–2412.

    Google Scholar 

  • Pearlman, M., Degnan, J., Bosworth, J., 2002. The International Laser Ranging Service. Adv. Space Res. 30 (2), 135–142.

    Google Scholar 

  • Prawirodirdjo, L., Bock, Y., McCaffrey, R., Genrich, J., Calais, E., Stevens, C., Puntodewo, S. S. O., Subarya, C., Rais, J., Zwick, P., Fauzi, 1997. Geodetic observations of interseismic strain segmentation at the sumatra subduction zone. Geophys. Res. Lett. 24 (21), 2601–2604.

    Google Scholar 

  • Roberts, G. O., Rosenthal, J. S., November 2001. Optimal scaling for various metropolis-hastings algorithms. Stat. Sci. 16 (4), 351–367.

    Google Scholar 

  • Santamaría-Gómez, A., Gravelle, M., Collilieux, X., Guichard, M., Martín Míguez, B., Tiphaneau, P., Wöppelmann, G., 2012. Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Global Planet. Change 98-99, 6–17.

    Google Scholar 

  • Schlüter, W., Himwich, E., Nothnagel, A., Vandenberg, N., Whitney, A., 2002. IVS and its important role in the maintenance of the global reference systems. Adv. Space Res. 30 (2), 145–150.

    Google Scholar 

  • Schwarz, G., 1978. Estimating the dimension of a model. Ann. Stat. 6 (2), 461–464.

    Google Scholar 

  • Teferle, F., Bingley, R., Dodson, A., Penna, N. T., Baker, T. F., 2002. Using GPS to separate crustal movements and sea level changes at tide gauges in the UK. International Association of Geodesy Symposia, Vol 124. Springer-Verlag, Heidelberg Berlin, pp. 264–269.

    Google Scholar 

  • Teferle, F. N., Bingley, R. M., Orliac, E. J., Williams, S. D. P., Woodworth, P., McLaughlin, D., Baker, T. F., Shennan, I., Milne, G. A., Bradley, S. L., 2009. Crustal motions in great britain: Evidence from continuous gps, absolute gravity and holocene sea-level data. Geophys. J. Int. 178 (1), 23–46.

    Google Scholar 

  • Teferle, F. N., Williams, S., Kierulf, H. P., Bingley, R., Plag, H.-P., 2008. A continuous gps coordinate time series analysis strategy for high-accuracy vertical land movements. Phys. Chem. Earth 33 (3-4), 205–216, https://doi.org/10.1016/j.pce.2006.11.002.

    Article  Google Scholar 

  • Teke, K., Böhm, J., Nilsson, T., Schuh, H., Steigenberger, P., Dach, R., Heinkelmann, R., Willis, P., Haas, R., Garcia-Espada, S., Hobiger, T., Ichikawa, R., Shimizu, S., 2011. Multi-technique comparison of troposphere zenith delays and gradients during cont08. J. Geodesy 85, 395–413.

    Google Scholar 

  • Van Camp, M., De Viron, O., Watlet, A., Meurers, B., Francis, O., Caudron, C., 2017. Geophysics from terrestrial time-variable gravity measurements. Reviews of Geophysics 55, 938–992.

    Google Scholar 

  • Van Camp, M., Francis, O., 2007. Is the instrumental drift of superconducting gravimeters a linear or exponential function of time? J. Geodesy 81 (5), 337–344.

    Google Scholar 

  • Van Camp, M., Meurers, B., de Viron, O., Forbirger, T., 2016. Optimized strategy for the calibration of superconducting gravimeters at the one per mille level. J. Geodesy 90 (1), 91–99.

    Google Scholar 

  • van Camp, M., Vanclooster, M., Crommen, O., Petermans, T., Verbeeck, K., Meurers, B., van Dam, T., Dassargues, A., 2006. Hydrological investigations at the membach station, belgium, and application to correct long periodic gravity variations. J. Geophys. Res. 111, B10403, https://doi.org/10.1029/2006JB004405.

  • Van Camp, M., Williams, S., Francis, O., 2005. Uncertainty of absolute gravity measurements. J. Geophys. Res. 110 (B05406).

    Google Scholar 

  • Virtanen, H., 2004. Loading effects in metsahovi from the atmosphere and the baltic sea. J. Geodyn. 38 (3-5), 407–422. URL http://www.sciencedirect.com/science/article/B6V9X-4DN1H6C-1/2/4e25c66d6e0ea5da2bf5cc8e1d7f0373.

    Google Scholar 

  • White, N., Church, J., Gregory, J., 2005. Coastal and global averaged sea level rise for 1950 to 2000. Geophys. Res. Lett. 32, L01601.

    Google Scholar 

  • Williams, S., 2003a. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J. Geodesy (76), 483–494.

    Google Scholar 

  • Williams, S., 2003b. Offsets in global positioning system time series. J. Geophys. Res 108 (B6), 2310.

    Google Scholar 

  • Williams, S., 2008. CATS: GPS coordinate time series analysis software. GPS Solut. (12), 147–153.

    Google Scholar 

  • Williams, S., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R., Miller, M., Johnson, D., 2004. Error analysis of continuous GPS position time series. J. Geophys. Res. 109 (B03).

    Google Scholar 

  • Williams, S., Willis, P., 2006. Error analysis of weekly station coordinates in the DORIS network. J. Geodesy 80 (8-11), 525–539.

    Google Scholar 

  • Willis, P., Fagard, H., Ferrage, P., Lemoine, F., Noll, C., Noomen, R., Otten, M., Ries, J., Rothacher, M., Soudarin, L., Tavernier, G., Valette, J., 2010. The International DORIS Service (IDS): Toward maturity, in DORIS: Scientific Applications in Geodesy and Geodynamics. Adv. Space Res. 45 (12), 1408–1420.

    Google Scholar 

  • Woodworth, P., Teferle, F. N., Bingley, R. M., Shennan, I., Williams, S. D. P., 2009. Trends in uk mean sea level revisited. Geophys. J. Int. 176 (1), 19–30.

    Google Scholar 

  • Woodworth, P., Tsimplis, M., Flather, R., Shennan, I., 1999. A review of the trends observed in British Isles mean sea level data measured by tide gauges. Geophys. J. Int. 136, 651–670.

    Google Scholar 

  • Wöppelmann, G., Letetrel, C., Santamaría-Gómez, A., Bouin, M.-N., Collilieux, X., Altamimi, Z., Williams, S., Martín Míguez, B., 2009. Rates of sea-level change over the past century in a geocentric reference frame. Geophys. Res. Lett. 36 (L12607).

    Google Scholar 

  • Wöppelmann, G., Martín Míguez, B., Bouin, M.-N., Altamimi, Z., 2007. Geocentric sea-level trend estimates from gps analyses at relevant tide gauges world-wide. Global Planet. Change 57, 396–406.

    Google Scholar 

  • Wyatt, F., 1982. Displacement of surface monuments: horizontal motion. J. Geophys. Res. (87), 979–989.

    Google Scholar 

  • Wyatt, F., 1989. Displacement of surface monuments: vertical motion. J. Geophys. Res. (94), 1655–1664.

    Google Scholar 

  • Zhang, J., Bock, Y., Fang, P., Williams, S., Genrich, J., Wdowinski, S., Behr, J., August 1997. Southern california permanent gps geodetic array: Error analysis of daily position estimates and site velocities. J. Geophys. Res. 102 (B8), 18,035–18,055.

    Google Scholar 

  • Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., Webb, F., March 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 102 (B3), 5005–5017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Norman Teferle .

Editor information

Editors and Affiliations

Appendix

Appendix

The appendix presents a cross-evaluation of the MCMC and Hector methods using the Benchmark Synthetic GNSS (BSG) time series (Chap. 2 of this book).

3.1.1 An Evaluation of MCMC Using Hector and the Benchmark Synthetic GNSS Time Series

Here we provide an evaluation of the MCMC method as implemented by Olivares and Teferle (2013) using Hector and the Benchmark Synthetic GNSS (BSG) time series. While providing the results from MCMC by themselves, we also carry out a basic comparison with the results provided and computed in-house with Hector. We have computed our own Hector parameter estimates since MCMC is a computationally intensive method and we have down–sampled the daily time series into weekly ones for all BSG series, see Fig. 3.36 for an example showing both original and down–sampled time series. Figure 3.37 shows the differences in the trend estimates \(\Delta v\) between the two methods. Overall the parameter estimates (trend, amplitude of the annual term and phase-lag, white and power-low noise amplitudes as well as spectral index) are in good agreement between MCMC and Hector. A detailed comparison is shown in Tables 3.17, 3.18, and 3.19 for the deterministic parameter estimates, and in Tables 3.20, 3.21 and 3.22 for the stochastic parameter estimates.

Fig. 3.36
figure 36

A weekly sampled time series (green line) superimposed on the daily time series (red line) for one of the time series for North, East, and Up components

Fig. 3.37
figure 37

Trend differences between Hector and MCMC for the 20 weekly BSG time series. North, East, and Up components are displayed in green, red, and blue, respectively. A box whisker plot showing minimum, 25th percentile, median, 75th percentile and maximum values is to the right

3.1.2 Gaussian Properties of Parameters Estimates from MCMC

The parameters estimated from MCMC follow in general a Gaussian distribution. While these histograms can provide valuable additional information it is clear that in several cases the MCMC method has failed to provide converged results. This is most likely due to instabilities in the variance/covariance matrix within the MCMC method. Figure 3.38 shows the histograms for the Up trend components for the 20 time series.

Table 3.17 Hector and MCMC parameter estimates for North component time series compared: trend v, amplitude of the annual term \(A_{1yr}\) and phase–lag \(\phi \)
Table 3.18 Hector and MCMC parameter estimates for East component time series compared: trend v, amplitude of the annual term \(A_{1yr}\) and phase–lag \(\phi \)
Table 3.19 Hector and MCMC parameter estimates for Up component time series compared: trend v, amplitude of the annual term \(A_{1yr}\) and phase–lag \(\phi \)

Further we have tested the Gaussian properties of the parameter estimates from the MCMC method by constructing the histograms for the amplitude estimates of the annual terms as shown in Figs. 3.39, 3.40, and 3.41 for the North, East and Up components, respectively.

We have also compared the mean and median trend estimates for all the time series considered in this analysis. The mean and median values show a similar magnitude. An indication that the estimates from MCMC exhibit unbiased and uncorrelated properties. A further test for the Skewness and the Kurtosis (“tailedness” of the probability distribution) for the trends again show the majority of the estimates indeed follow a Gaussian distribution, see Tables 3.23, 3.24, and 3.25. Formally, the Skewness of a Gaussian distribution is 0 while the Kurtossis is 3.

Table 3.20 Hector and MCMC stochastic parameter estimates for North component time series compared: spectral index \(\kappa \), power–law \(\sigma _{pl}\) and white \(\sigma _{wn}\) noise amplitude
Table 3.21 Hector and MCMC stochastic parameter estimates for East component time series compared: spectral index \(\kappa \), power–law \(\sigma _{pl}\) and white \(\sigma _{wn}\) noise amplitude
Table 3.22 Hector and MCMC stochastic parameter estimates for Up component time series compared: spectral index \(\kappa \), power–law \(\sigma _{pl}\) and white \(\sigma _{wn}\) noise amplitude
Fig. 3.38
figure 38figure 38

Histograms of the trend estimates of the Up component, continued on next page

Fig. 3.39
figure 39figure 39

Histograms for the annual term amplitude of the North component, continued on next page

Fig. 3.40
figure 40figure 40

Histograms for the annual term amplitude of the East component, continued on next page

Fig. 3.41
figure 41figure 41

Histograms for the annual term amplitude of the Up component, continued on next page

Table 3.23 Statistics for the Gaussian distributions of the North component time series MCMC results: trend v, amplitude of the annual term \(A_{1yr}\), phase–lag \(\phi \), Skewness and Kurtosis
Table 3.24 Statistics for the Gaussian distributions of the East component time series MCMC results: trend v, amplitude of the annual term \(A_{1yr}\), phase–lag \(\phi \), Skewness and Kurtosis
Table 3.25 Statistics for the Gaussian distributions of the Up component time series MCMC results: trend v, amplitude of the annual term \(A_{1yr}\), phase–lag \(\phi \), Skewness and Kurtosis

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olivares-Pulido, G., Teferle, F.N., Hunegnaw, A. (2020). Markov Chain Monte Carlo and the Application to Geodetic Time Series Analysis. In: Montillet, JP., Bos, M. (eds) Geodetic Time Series Analysis in Earth Sciences. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-21718-1_3

Download citation

Publish with us

Policies and ethics