Skip to main content

Effect of Pollution on Transboundary River Water Trade

  • Conference paper
  • First Online:
Group Decision and Negotiation: Behavior, Models, and Support (GDN 2019)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 351))

Included in the following conference series:

Abstract

Transboundary rivers are often polluted by multiple agents located along the river. In this work, we attempt to investigate the impact of pollution on bilateral river water trade. Specifically, we look at how trade quantity and price are affected by pollution damages. The contributions of the work are threefold. First, we propose a stylised two agent model of a polluted which describes allocation decisions. Next, we characterise the non-cooperative behaviour of this system of two agents. As the final result of this article we derive the participation condition for bilateral trade and an expression for the extent of trade which can thus happen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In order to focus our attention completely on pollution externality and its consequences on allocation, we restrict our study to two agents and do not consider complex river geographies. This approach simplifies our analysis and allows us to avoid excessive notation.

  2. 2.

    The allocations \(x_{i}\) and \(x_{k}\) may be thought of as the net consumptions obtained after accounting for the return flows.

  3. 3.

    The assumption of linearity is taken for mathematical convenience as it allows for an easier understanding of the dynamics of the strategic situation.

  4. 4.

    Had \(q_{0}-\kappa (\,s_{i}+s_{k}-2x'_{i})\,<0\), then the inequality would be \(d_{p}\ge \frac{b'_{k}(\,s_{k}+s_{i}-x'_{i})\,}{q_{0}-\kappa (\,s_{i}+s_{k}-2x'_{i})\,}\).

References

  1. Alcalde-Unzu, J., Gómez-Rúa, M., Molis, E.: Sharing the costs of cleaning a river: the upstream responsibility rule. Games Econ. Behav. 90, 134–150 (2015). http://www.sciencedirect.com/science/article/pii/S0899825615000305

    Article  MathSciNet  Google Scholar 

  2. Ambec, S., Dinar, A., McKinney, D.: Water sharing agreements sustainable to reduced flows. J. Environ. Econ. Manag. 66(3), 639–655 (2013). http://www.sciencedirect.com/science/article/pii/S0095069613000429

    Article  Google Scholar 

  3. Ambec, S., Ehlers, L.: Sharing a river among satiable agents. Games Econ. Behav. 64(1), 35–50 (2008). http://www.sciencedirect.com/science/article/pii/S0899825607001674

    Article  MathSciNet  Google Scholar 

  4. Ambec, S., Sprumont, Y.: Sharing a river. J. Econ. Theory 107(2), 453–462 (2002). http://www.sciencedirect.com/science/article/pii/S0022053101929497

    Article  MathSciNet  Google Scholar 

  5. Ansink, E., Houba, H.: Sustainable agreements on stochastic river flow. Resour. Energy Econ. 44, 92–117 (2016). http://www.sciencedirect.com/science/article/pii/S0928765516000221

    Article  Google Scholar 

  6. Ansink, E., Ruijs, A.: Climate change and the stability of water allocation agreements. Environ. Resour. Econ. 41(2), 249–266 (2008). https://doi.org/10.1007/s10640-008-9190-3

    Article  Google Scholar 

  7. Ansink, E., Weikard, H.P.: Sequential sharing rules for river sharing problems. Soc. Choice Welf. 38(2), 187–210 (2012). https://doi.org/10.1007/s00355-010-0525-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Coase, R.H.: The problem of social cost. J. Law Econ. 3, 1–44 (1960). https://doi.org/10.1086/466560

    Article  Google Scholar 

  9. Dong, B., Ni, D., Wang, Y.: Sharing a polluted river network. Environ. Resour. Econ. 53(3), 367–387 (2012). https://doi.org/10.1007/s10640-012-9566-2

    Article  Google Scholar 

  10. Gengenbach, M.F., Weikard, H.P., Ansink, E.: Cleaning a river: an analysis of voluntary joint action. Nat. Resour. Model. 23(4), 565–590 (2010). https://doi.org/10.1111/j.1939-7445.2010.00074.x

    Article  MathSciNet  MATH  Google Scholar 

  11. Giannias, D.A., Lekakis, J.N.: Fresh surface water resource allocation between Bulgaria and Greece. Environ. Resour. Econ. 8(4), 473–483 (1996). https://doi.org/10.1007/BF00357415

    Article  Google Scholar 

  12. Giordano, M.A.: Managing the quality of international rivers: global principles and basin practice. Nat. Resour. J. 43(1), 111–136 (2003)

    Google Scholar 

  13. Gomez-Rua, M.: Sharing a polluted river through environmental taxes. SERIEs 4(2), 137–153 (2013)

    Article  Google Scholar 

  14. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968). http://science.sciencemag.org/content/162/3859/1243

    Article  Google Scholar 

  15. Just, R.E., Netanyahu, S. (eds.): Conflict and Cooperation on Trans-Boundary Water Resources Conflict and Cooperation on Trans-Boundary Water Resources. Natural Resource Management and Policy, vol. 11. Springer, New York (1998). https://doi.org/10.1007/978-1-4615-5649-7

    Book  Google Scholar 

  16. van der Laan, G., Moes, N.: Collective decision making in an international river pollution model. Nat. Resour. Model. 29, 374–399 (2016)

    Article  MathSciNet  Google Scholar 

  17. Lekakis, N.J.: Bilateral monopoly: a market for intercountry river water allocation. Environ. Manag. 22(1), 1–8 (1998). https://doi.org/10.1007/s002679900079

    Article  Google Scholar 

  18. Ni, D., Wang, Y.: Sharing a polluted river. Games Econ. Behav. 60(1), 176–186 (2007). http://www.sciencedirect.com/science/article/pii/S0899825606001412

    Article  MathSciNet  Google Scholar 

  19. Osório, A.: A sequential allocation problem: the asymptotic distribution of resources. Group Decis. Negot. 26(2), 357–377 (2017). https://doi.org/10.1007/s10726-016-9489-3

    Article  Google Scholar 

  20. Sechi, G.M., Zucca, R.: Water resource allocation in critical scarcity conditions: a bankruptcy game approach. Water Resour. Manag. 29(2), 541–555 (2015). https://doi.org/10.1007/s11269-014-0786-9

    Article  Google Scholar 

  21. Wang, Y.: Trading water along a river. Math. Soc. Sci. 61(2), 124–130 (2011). http://www.sciencedirect.com/science/article/pii/S0165489610000946

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Abraham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abraham, A., Ramachandran, P. (2019). Effect of Pollution on Transboundary River Water Trade. In: Morais, D., Carreras, A., de Almeida, A., Vetschera, R. (eds) Group Decision and Negotiation: Behavior, Models, and Support. GDN 2019. Lecture Notes in Business Information Processing, vol 351. Springer, Cham. https://doi.org/10.1007/978-3-030-21711-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21711-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21710-5

  • Online ISBN: 978-3-030-21711-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics