Skip to main content

Genome Editing and Abiotic Stress Tolerance in Crop Plants

  • Chapter
  • First Online:
Recent Approaches in Omics for Plant Resilience to Climate Change

Abstract

Abiotic stresses such as drought, salinity, high temperature, chilling, and heavy metals have caused alterations in plant growth and development, threatening crop yield and quality, and leading to global food insecurity. In this aspect, plant breeders have developed many genetic engineering approaches to enhance crop productivity, which are not able to meet the demand of food production as the inheritance of abiotic stress tolerance is so complex. To overcome the limitations of genetic engineering techniques, plant breeders are now focusing on recent availability of genome editing because of its simplicity, high efficiency, and precise target modification at genomic loci for developing abiotic stress-tolerant crops. Advancements in genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) have made it possible for molecular biologists to more precisely target any gene of interest. However, ZFNs and TALENs are costly and protracted as they involve intricate steps that require protein engineering. Among these techniques, CRISPR/Cas9 is widely used for reasons of its simplicity, low cost, and ease of genome editing. This chapter focuses on the application of recent genome editing tools in advancing abiotic stress tolerance in different crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cas9:

CRISPR-associated protein 9

CRISPR:

Clustered regularly interspaced short palindromic repeats

DSB:

Double-strand breaks

GE:

Genome editing/Genetic engineering

GP:

Germination percentage

GR:

Germination rate

HDR:

Homology directed repair

HR:

Homologous recombination

MAPK:

Mitogen-activated protein kinase

NHEJ:

Nonhomologous end-joining

TAL:

Transcription activator-like

TALEN:

Transcription activation-like effector nucleases

TrugRNA:

Truncated RNA

ZFN:

Zinc finger nucleases

References

  • Akhtar I, Nazir N (2013) Effect of water logging and drought stress in plants. Int J Water Resour Environ Sci 22:34–40

    Google Scholar 

  • Anderssona M, Turessona H, Olssona N, Fälta A-S, Ohlssona P, Gonzalezb MN, Samuelssond M, Hofvandera P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:1–8

    Article  CAS  Google Scholar 

  • Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell. https://doi.org/10.1105/tpc.110.078964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf MA, Akbar A, Askari SH, Iqbal M, Rasheed R, Hussain I (2018) Recent advances in abiotic stress tolerance of plants through chemical priming: an overview. In: Advances in seed priming, pp 51–79

    Chapter  Google Scholar 

  • Bechtold U, Field B (2018) Molecular mechanisms controlling plant growth during abiotic stress. J Exp Bot 69:2753–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belhaj K, Garcia AC, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  PubMed  Google Scholar 

  • Bo W, Zhaohui Z, Huanhuan Z, Xia W, Binglin L, Lijia Y, Xiangyan H, Deshui Y, Xuelian Z, Chunguo W, Wenqin S, Chengbin C, Yong Z (2019) Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice. Rice Sci 26:98–108

    Article  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Eck JV (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-Associated9 system. Plant Physiol 166:1292–1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 16:176–185

    Article  CAS  PubMed  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82–e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 3:1697–1705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2015) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14(1):169–176

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Cordones MN, Mohamed S, Tanoi K, Natsuko Kobayashi NI, Takagi K, Vernet A (2017) Production of low-Cs C rice plants by inactivation of the K C transporter OsHAK1 with the CRISPR-Cas system. Plant J 92:43–56

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Curtin SJ, Anderson JE, Starker CG, Baltes NJ, Mani D (2013) Targeted mutagenesis for functional analysis of gene duplication in legumes. Methods Mol Biol 1069:25–42

    Article  CAS  PubMed  Google Scholar 

  • Daryanto S, Wang L, Jacinthe P-A (2016) Global synthesis of drought effects on maize and wheat production. PlosOne 11:e0156362

    Article  CAS  Google Scholar 

  • Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Kai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 7:e45117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan AZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2016) FAOSTAT Database. http://faostat3.fao.org/faostatgateway/go/to/download/Q/QC/E. Accessed 8 Feb 2018

  • Farooq M, Gogoi N, Barthakur S, Baroowa B, Bharadwaj N, Alghamdi SS et al (2017) Drought stress in grain legumes during reproduction and grain filling. J Agron Crop Sci 203:81–102

    Article  Google Scholar 

  • Forsyth A, Weeks T, Richael C, Duan H (2016) Transcription activator-like effector nucleases (TALEN)-mediated targeted DNA insertion in potato plants. Front Plant Sci 17:1572

    Google Scholar 

  • Gabaldón-Leal C, Webber H, Otegui ME, Slafer GA, Ordónez R, Gaiser T, Loritea IJ, Ruiz-Ramos M, Ewert F (2016) Modelling the impact of heat stress on maize yield formation. Field Crops Res 198:226–237

    Article  Google Scholar 

  • Gall HL, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plan Theory 4:112–166

    Google Scholar 

  • Gao C (2015) Genome editing in crops: from bench to field. Natl Sci Rev 2:13–15

    Article  CAS  Google Scholar 

  • Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, Botella JR, Song C (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 8:1364

    Article  PubMed  PubMed Central  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007) CRISPR Finder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:52–57

    Article  Google Scholar 

  • Guo M, Liu J-H, Ma X, Luo D-X, Gang Z-H, Lu M-H (2016) The plant heat transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:1–13

    Google Scholar 

  • Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas G, Seshagiri S, Schuster SC, Rajesh P, Gupta R (2015) Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One 9:e104259

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical and molecular characterization. Int J Genomics 2014(701596):1–18

    Article  CAS  Google Scholar 

  • Howells RM, Craze M, Bowden S, Wallington EJ (2018) Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC Plant Biol 18:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hryhorowicz M, Ski DL, Zeyland J, Słomski R (2017) CRISPR/Cas9 immune system as a tool for genome engineering. Arch Immunol Ther Exp 65:233–240

    Article  CAS  Google Scholar 

  • Hu C, Quan C, Zhou J, Yu Q, Bai Z, Xu Z, Gao X, Li L, Zhu J, Chen R (2018) Identification and characterization of a novel abiotic stress responsive OsTHIC gene from rice. Biotechnol Biotechnol Equip 32:874–880

    Article  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:1–10

    Article  CAS  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain M (2015) Functional genomica of abiotic stress tolerance in plants: a CRISPR approach. Front Plant Sci 6:1–4

    Article  Google Scholar 

  • Jallad KN (2015) Heavy metal exposure from ingesting rice and its related potential hazardous health risks to humans. Environ Sci Pollut Res Int 22:15449–15458

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  PubMed  Google Scholar 

  • Kamburova VS, Nikitina EV, Shermatov SE, Buriev ZT, Kumpatla SP, Emani C, Abdurakhmonov IY (2017) Genome editing in plants: an overview of tools and applications. Int J Agron 2017:1–15

    Article  CAS  Google Scholar 

  • Kamthan A, Chaudhury A, Kamthan M, Datta A (2016) Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor Appl Genet 129:1639–1655

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 18:31–41

    Article  CAS  PubMed  Google Scholar 

  • Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H, Kim YS, Ha SH, Choi YD, Kim JK (2017) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15:754–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei M, Tie BQ, Song ZG, Liao BH, Lepo JE, Huang YZ (2015) Heavy metal pollution and potential health risk assessment of white rice around mine areas in Hunan Province, China. Food Secur 7:45–54

    Article  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2010) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016) Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants 2(10)

    Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Sheen J (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JF, Zhang D, Sheen J (2014) Cas9-Based genome editing in Arabidopsis and tobacco. Methods Enzymol 546:459–472

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cai H, Liu P, Wang C, Gao H, Wu C et al (2017) Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Commun 484:292–297

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang X, Wang W, Guo X, Wu Z, Du W, Zhao Y, Xia L (2018) Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice. Mol Plant 11(7):995–998

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yu D, Qanmber G, Lu L, Wang L, Zheng L, Liu Z, Wu H, Liu X, Chen Q, Li F, Yang Z (2019a) GhKLCR1, a kinesin light chain-related gene, induces drought-stress sensitivity in Arabidopsis. Sci China Life Sci 62:63–75

    Article  CAS  PubMed  Google Scholar 

  • Li R, Liu C, Zhao R, Wang L, Chen L, Yu W, Zhang S, Sheng J, Shen L (2019b) CRISPR/Cas9-mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol 19:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang D, Nia Z, Xia H, Xie Y, Lv X, Wang J, Lin L, Deng Q, Luo X (2019) Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci Horticult 246:34–43

    Article  CAS  Google Scholar 

  • Liu L, Ji H, An J, Shi K, Ma J, Liu B, Tang L, Cao W, Zhu Y (2019) Response of biomass accumulation in wheat to low-temperature stress at jointing and booting stages. Environ Exp Bot 157:46–57

    Article  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A 102:2232–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long L, Guo D-D, Gao W, Yang W-W, Hou L-P, Ma X-N, Miao Y-C, Botella JR, Song C-P (2018) Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8

    Google Scholar 

  • Ma X, Zhu Q, Chen Y, Liu YG (2016) Crispr/cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974

    Article  CAS  PubMed  Google Scholar 

  • Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Unger-Wallace E (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A 108:2623–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao X, Zheng Y, Xiao K, Wei Y, Zhu Y, Cai Q (2018) OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. Biochem Biophys Res Commun 495:461–467

    Article  CAS  PubMed  Google Scholar 

  • Marco F, Bitrián CP, Venkat Rajam M, Alcázar R, Tiburcio AF (2015) Genetic engineering strategies for abiotic stress tolerance in plants. Plant Biol Biotechnol 2:579–609

    Article  Google Scholar 

  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Dulay GP (2010) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143

    Article  PubMed  CAS  Google Scholar 

  • Minkenberg B, Xie K, Yang Y (2016) Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinasegenes. Plant J 89:636–648

    Article  CAS  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9

    Google Scholar 

  • Mishra AK (2014) Climate change and challenges of water and food security. Int J Sustain Built Environ 3:153–165

    Article  Google Scholar 

  • Moonmoon S, Islam MT (2017) Effect of drought stress at different growth stages on yield and yield components of six rice (Oryza sativa L.) genotypes. Fundam Appl Agric 2:285–289

    Article  Google Scholar 

  • Muler AL, Oliveira RS, Lambers H, Veneklaas EJ (2014) Does cluster-root activity benefit nutrient uptake and growth of co-existing species? Oecologia (Berl) 174:23–31

    Article  Google Scholar 

  • Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Singh AK, Tyagi A, Salgotra RK, Dar AA, Bhat R (2018) CRISPR/Cas approach: a new way of looking at plant–abiotic interactions. J Plant Physiol 224–225:156–162

    Article  PubMed  CAS  Google Scholar 

  • Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas Genome Editing Systems: tools of discovery. Acta Nat 6:19–40

    Article  CAS  Google Scholar 

  • Nezhadahmadi A, Hossain Prodhan Z, Faruq G (2013) Drought tolerance in wheat. Sci World J 610721:1–12

    Article  CAS  Google Scholar 

  • Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci U S A 107:12034–12039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi YK, Arora S, Reddy MK (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:1–13

    PubMed  PubMed Central  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075

    Article  CAS  Google Scholar 

  • Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol 51:1–8

    Article  CAS  Google Scholar 

  • Podevin N, Davies HV, Hartung F, Nogue F, Casacuberta JM (2012) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol 1063:1–9

    Google Scholar 

  • Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ (2013) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 (Bethesda) 3(10):1707–1715

    Article  PubMed Central  CAS  Google Scholar 

  • Rai AC, Singh M, Shah K (2013) Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry 85:44–50

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie (Paris) 117:119e–128e

    Article  CAS  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance. In: Hossain M, Wani S, Bhattacharjee S, Burritt D, Tran LS (eds) Drought stress tolerance in plants, vol 1. Springer, Cham, pp 1–16

    Google Scholar 

  • Salehi-lisar SY, Motafakkerazad R, Hossain MM, Rahman IMM (2012) Water stress in plants: causes, effects and responses. InTech, Croatia

    Google Scholar 

  • Selmar D, Kleinwachter M (2013) Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol 54:817–826

    Article  CAS  PubMed  Google Scholar 

  • Semiz G, Blande JD, Heijari J, Işık K, Niinemets Ü, Holopainen JK (2012) Manipulation of VOC emissions with methyl jasmonate and carrageenan in the evergreen conifer Pinus sylvestris and evergreen broadleaf Quercus ilex. Plant Biol 14:57–65

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2016) Heavy metal stress and crop productivity. In: Hakeem KR (ed) Production and global environmental issues. Springer International, Cham, pp 1–25

    Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410

    Article  CAS  PubMed  Google Scholar 

  • Shanmugavadivel PS, Prakash C, Mithra SVA (2019) Molecular approaches for dissecting and improving drought and heat tolerance in rice. Adv Rice Res Abiotic Stress Tolerance 2019:839–867

    Article  Google Scholar 

  • Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M (2017a) Knock out of the Annexin Gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biotechnol 60:539–547

    CAS  Google Scholar 

  • Shen JB, Lv B, Luo LQ, He JM, Mao CJ, Xi DD, Ming F (2017b) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7:40641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Habben J, Archibald RL, Drummond BJ, Chamberlin MA, Williams RW, Lafitte HR et al (2015) Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiol 169:266–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Prasad S, Yadav V, Kumar A, Jaiswal B, Kumar A, Khan NA, Dwivedi DK (2018) Effect of drought stress on yield and yield components of rice (Oryza sativa L.) genotypes. Int J Curr Microbiol Appl Sci 7:2752–2759

    Article  Google Scholar 

  • Stephens J, Barakate A (2017) Gene editing technologies – ZFNs, TALENs, and CRISPR/Cas9. In: Thomas B, Murray BG, Murphyp JB (eds) Encyclopedia of applied plant sciences, 2nd edn. Academic, Cambridge, MA, pp 157–161

    Chapter  Google Scholar 

  • Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomol Ther 4:252–267

    Google Scholar 

  • Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X et al (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:14438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML (2009) High frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A (2012) Genome modifications in plant cells by custom made restriction enzymes. Plant Biotechnol J 10:373–389

    Article  CAS  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2018) With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol 36:6–7

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lu W, He X, Wang F, Zhou Y, Guo X (2016a) The cotton mitogen-activated protein kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol 57:1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Qin Q, Sun F, Wang Y, Xu D, Li Z (2016b) Genome-wide differences in DNA methylation changes in two contrasting rice genotypes in response to drought conditions. Front Plant Sci 7:1675

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65:8674–8682

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Jin J, Jiang S, Ning S, Liu L (2018) Quantitative response of soybean development and yield to drought stress during different growth stages in the Huaibei Plain, China. Agronomy 8:1–16

    Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Xu ZY, Kim SY, Hyeon DY, Kim DH, Dong T, Park Y, Jin JB, Joo SH, Kim SK, Hong JC, Hwang D, Hwang I (2013) The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25:4708–4724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25:1147–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43:529–532

    Article  PubMed  Google Scholar 

  • Yang B, Sugio A, White FF (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci U S A 103:10503–10508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ynet N, Yilancioglu K (2018) A CRISPR/Cas9 model of sunflower (Helianthus annuus L.) resistance for biotic and abiotic stresses. New Biotechnol 44:68–164

    Google Scholar 

  • Zaman QU, Li C, Cheng H, Hu Q (2018) Genome editing opens a new era of genetic improvement in polyploid crops. Crop J 7:141–150

    Article  Google Scholar 

  • Zhang F, Voytas DF (2011) Targeted mutagenesis in Arabidopsis using zinc finger nucleases. Methods Mol Biol 701:167–177

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E, Hoshawm JP, Reyon D, Christian M, Joung JK (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107:12028–12033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z (2014) TheCRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li D, Zhou Z, Zahoor R, Chen B, Meng Y (2017) Soil water and salt affect cotton (Gossypium hirsutum L.) photosynthesis, yield and fiber quality in coastal saline soil. Agric Water Manag 187:112–121

    Article  Google Scholar 

  • Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, Lu X, Zhang M, Jin J (2018a) Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int J Environ Res Public Health 15:1–14

    Google Scholar 

  • Zhang Y, Massel K, Godwin LD, Gao C (2018b) Application and potential of genome editing in crop improvement. Genome Biol 19:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9design. Sci Rep 6:23890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Deng K, Cheng Y, Zhong Z, Tian L, Tang X (2017) CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 8:1598

    Article  PubMed  PubMed Central  Google Scholar 

  • da Cruz RP et al (2013) Avoiding damage and achieving cold tolerance in rice plants. Food Energy Security 2(2):96–119

    Article  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of GKS is supported by the Forest and Environment Department, Government of Odisha, India, and is gratefully acknowledged. The authors apologize for being unable to cite all relevant papers.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Surabhi, G.K., Badajena, B., Sahoo, S.K. (2019). Genome Editing and Abiotic Stress Tolerance in Crop Plants. In: Wani, S. (eds) Recent Approaches in Omics for Plant Resilience to Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-21687-0_2

Download citation

Publish with us

Policies and ethics