Skip to main content

Novel Breeding and Biotechnological Approaches to Mitigate the Effects of Heat Stress on Cotton

  • Chapter
  • First Online:
Recent Approaches in Omics for Plant Resilience to Climate Change

Abstract

High-temperature stress resulting from global warming is a major limiting factor for agriculture around the globe. Although cotton is a warmer-season crop, consistent high temperatures above optimal levels lead to various changes in morphological, physiological and biochemical characteristics of the plants that reduce the yield and quality of fibre. Breeding for thermotolerant cultivars is one of the best possible strategies to mitigate the adverse effect of heat stress. For this purpose, sufficient knowledge of plant response to heat stress, the mechanism of high-temperature tolerance and possible breeding strategies is imperative. All the stages of plant growth are affected by heat stress but the level of heat threshold varies at different stages. Heat stress may inhibit or reduce seed germination, causing poor seedlings and wilted roots at early stages, whereas at later stages it may adversely affect vegetative growth, reproductive growth, photosynthesis rate and cell membrane stability. Heat stress may also modulate the level of metabolites, hormones and reactive oxygen species (ROS). The expression of different heat shock proteins (HSP) varies with increase in temperature. In addition to HSPs, the cotton plant has various other mechanisms to cope with heat stress such as production of antioxidants for scavenging of ROS, maintenance of membrane stability, accumulation of compatible solutes and activation of various stress-responsive genes. A comprehensive understanding of traditional and advanced breeding and biotechnological approaches is required to improve heat tolerance in plants. There are many examples of plant improvement using traditional breeding approaches, but few achievements by utilizing biotechnological tools are reported, which is the result of very limited knowledge of molecular approaches and the genes related to heat tolerance. Conventional breeding approaches combined with biotechnological tools can provide opportunities to identify and incorporate genes related to stress tolerance for the development of new cultivars that can withstand high temperatures.

Muhammad Tehseen Azhar joint with first author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Haleem S, Metwali EM, Al-Felaly AM (2010) Genetic analysis of yield and its components of some Egyptian cotton (Gossypium barbadense L.) varieties. World J Agric Sci 6:615–621

    Google Scholar 

  • Abdelmageed A, Gruda N (2009) Influence of high temperatures on gas exchange rate and growth of eight tomato cultivars under controlled heat stress conditions. Eur J Horti Sci 74:152

    CAS  Google Scholar 

  • Abdul-Baki AA, Stommel JR (1995) Pollen viability and fruit set of tomato genotypes under optimumand high-temperature regimes. Horti Sci 30:115–117

    Google Scholar 

  • Acquaah G (2009) Principles of plant genetics and breeding. John Wiley & Sons, New York, NY

    Google Scholar 

  • Ahmad RT, Malik TA, Khan IA, Jaskani MJ (2009) Genetic analysis of some morpho-physiological traits related to drought stress in cotton (Gossypium hirsutum). Int J Agric Biol 11:235–240

    CAS  Google Scholar 

  • Ahmed FE, Hall AE, DeMason DA (1992) Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). Am J Bot 79:784–791

    Article  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  • Alcázar R et al (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plant 48:81–86

    Article  CAS  Google Scholar 

  • Ashraf M, Saeed M, Qureshi M (1994) Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environ Exp Bot 34:275–283

    Article  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  • Azhar F, Ali Z, Akhtar M, Khan A, Trethowan R (2009) Genetic variability of heat tolerance, and its effect on yield and fibre quality traits in upland cotton (Gossypium hirsutum L.). Plant Breed 128:356–362

    Article  Google Scholar 

  • Baloch MJ, Lakho AR, Rind R, Bhutto H (2000) Screening of cotton genotypes for heat tolerance via in vitro gametophytic selection technique. Pak J Biol Sci 3:2037–2038

    Article  Google Scholar 

  • Batool S, Khan NU, Gul S, Baloch MJ, Turi NA, Taran SA, Saeed M (2013) Genetic analysis for yield and yield contributing variables in upland cotton. J Food Agric Environ 11:624–630

    Google Scholar 

  • Blum A (2018) Plant breeding for stress environments. CRC Press, Boca Raton, FL

    Google Scholar 

  • Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Sci 21:43–47

    Article  Google Scholar 

  • Bradow JM, Davidonis GH (2000) Quantitation of fiber quality and the cotton production-processing interface: A physiologist’s perspective. J Cott Sci 4:34–64

    Google Scholar 

  • Brown R, Oosterhuis D, Coker D, Fowler L (2003) The dynamics of dry matter partitioning in the cotton boll of modern and obsolete cultivars. In: Proceedings Beltwide Cotton Conferences, National Cotton Council, Memphis, TN pp 1886–1889.

    Google Scholar 

  • Burke J (2001) Opportunities for improving cotton’s tolerance to high temperature. In: Dugger CP, Richter DA (eds) Proceeding of the Beltwide Cotton Conferences. National Cotton Council of America, Memphis, TN

    Google Scholar 

  • Chang H-C, Tang Y-C, Hayer-Hartl M, Hartl FU (2007) SnapShot: molecular chaperones, Part I. Cell 128:212.e211

    Article  Google Scholar 

  • Chen L, Hellmann H (2013) Plant E3 ligases: flexible enzymes in a sessile world. Mol Plant 6:1388–1404

    Article  CAS  PubMed  Google Scholar 

  • Collins GG, Nie X, Saltveit ME (1995) Heat shock proteins and chilling sensitivity of mung bean hypocotyls. J Exp Bot 46:795–802

    Article  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui F et al (2012) Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell 24:233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Storme N, D Geelen (2014) The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ 37:1–18

    Google Scholar 

  • Djanaguiraman M, Annie Sheeba J, Durga Devi D, Bangarusamy U (2009) Cotton leaf senescence can be delayed by nitrophenolate spray through enhanced antioxidant defence system. J Agron Crop Sci 195:213–224

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Prasad PV, Boyle D, Schapaugh W (2013) Soybean pollen anatomy, viability and pod set under high temperature stress. J Agron Crop Sci 199:171–177

    Article  Google Scholar 

  • dos Reis SP, Lima AM, de Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647

    Article  PubMed  PubMed Central  Google Scholar 

  • El-kholy AS, Hall AE, Mohsen AA (1997) Heat and chilling tolerance during germination and heat tolerance during flowering are not associated in cowpea. Crop Sci 37:456–463

    Article  Google Scholar 

  • El-Refaey R, El-Razek UA (2013) Generation mean analysis for yield, its components and quality characteristics in four crosses of Egyptian cotton (Gossypium barbadense L.). Asian J Crop Sci 5:153–166

    Article  Google Scholar 

  • Erickson A, Markhart A (2002) Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature Plant. Plant Cell Environ 25:123–130

    Article  Google Scholar 

  • Essamine J, Ammar S, Bouzid S (2010) Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussion and mechanisms of defense. J Biol Sci 10:565–572

    Article  Google Scholar 

  • Fariduddin Q, Varshney P, Yusuf M, Ahmad A (2013) Polyamines: potent modulators of plant responses to stress. J Plant Interact 8:1–16

    Article  CAS  Google Scholar 

  • Feaster C, Turcotte E (1985) Use of heat tolerance in cotton breeding. In: Dugger CP, Richter DA (Eds) Proceeding of the Beltwide Cotton Conferences, National Cotton Council, Memphis, TN pp 364–366.

    Google Scholar 

  • Feaster C, Young E, Turcotte E (1980) Comparison of artificial and natural selection in American pima cotton under different environments 1. Crop Sci 20:555–558

    Article  Google Scholar 

  • Fisher W (1973) Association of temperature and boll set. In: Proc. Beltwide Cotton Prod. Res. Conf, National Cotton Council, Memphis, TN pp 9–10.

    Google Scholar 

  • Fitter AH, Hay RK (2012) Environmental physiology of plants. Academic press, New York, NY

    Google Scholar 

  • Galiba G (1997) Heat stress induced differential alternations in the photosynthesis, membrane thermostability and biomass production of bread and durum wheat varieties. Acta Agron Hungar 45:1–15

    Google Scholar 

  • Gipson J, Joham H (1969) Influence of night temperature on growth and development of cotton (Gossypium hirsutum L.). III. fiber elongation 1. Crop Sci 9:127–129

    Article  Google Scholar 

  • Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ 35:1050–1064

    Article  PubMed  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205:38–47

    Article  PubMed  CAS  Google Scholar 

  • Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of mi R 398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Zhang J, Gao Q, Xing S, Li F, Wang W (2008) Drought tolerance through overexpression of monoubiquitin in transgenic tobacco. J Plant Physiol 165:1745–1755

    Article  CAS  PubMed  Google Scholar 

  • Hall AE (2000) Crop responses to environment. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Hall A (2004) Mitigation of stress by crop management. In: Advances in agronomy, vol 93. Elsevier, Amsterdam

    Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Hanson PM, Chen JT, Kuo G (2002) Gene action and heritability of high-temperature fruit set in tomato line CL5915. Hortic Sci 37:172–175

    CAS  Google Scholar 

  • Harsant J, Pavlovic L, Chiu G, Sultmanis S, Sage TL (2013) High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. J Exp Bot 64:2971–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad M, Ozturk M (2013) Enhancing plant productivity under salt stress: Relevance of poly-omics. In: Salt stress in plants, Springer, New York, NY pp 113–156.

    Chapter  Google Scholar 

  • Hazra P, Ansary S (2008) Genetics of heat tolerance for floral and fruit set to high temperature stress in tomato (Lycopersicon esculentum Mill.). SABRAO J Breed Genet 40:117-125

    Google Scholar 

  • Hussain M, Azhar FM, Khan AA (2009) Genetics of inheritance and correlations of some morphological and yield contributing traits in upland cotton. Pak J Bot 41:2975–2986

    Google Scholar 

  • Ibrahim AM, Quick JS (2001) Heritability of heat tolerance in winter and spring wheat. Crop Sci 41:1401–1405

    Article  Google Scholar 

  • Iqbal M et al (2013) Studies of genetic variation for yield related traits in upland cotton. Am Eur J Agric Environ Sci 13:611–618

    Google Scholar 

  • Jenks MA, Hasegawa PM, Jain SM (2007) Advances in molecular breeding toward drought and salt tolerant crops. Springer, New York, NY

    Book  Google Scholar 

  • Jia F, Rock CD (2013) MIR846 and MIR842 comprise a cistronic MIRNA pair that is regulated by abscisic acid by alternative splicing in roots of Arabidopsis. Plant Mol Biol 81:447–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jóhannsson MH, Stephenson AG (1998) Effects of temperature during microsporogenesis on pollen performance in Cucurbita pepo L.(Cucurbitaceae). Int J Plant Sci 159:616–626

    Article  Google Scholar 

  • Kakani V, Reddy K, Koti S, Wallace T, Prasad P, Reddy V, Zhao D (2005) Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann Bot 96:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karuppanapandian T, Moon J-C, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709-725

    CAS  Google Scholar 

  • Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol 51:677–686

    Article  CAS  PubMed  Google Scholar 

  • Khalid I, Azhar FM, Khan IA, Ehsan U (2010) Assessment of cotton (Gossypium hirsutum) germplasm under water stress condition. Int J Agric Biol 12:251–255

    Google Scholar 

  • Khan N, Hassan G, Kumbhar M, Parveen A, Ahmad W, Shah S, Ahmad S (2007) Gene action of seed traits and oil content in upland cotton (Gossypium hirsutum L.). SABRAO J Breed Genet 39:17–29

    Google Scholar 

  • Killi F, Efe L, Mustafayev S (2005) Genetic and environmental variability in yield, yield components and lint quality traits of cotton. Int J Agric Biol 6:1007–1010

    Google Scholar 

  • Kurepa J, Toh‐e A, Smalle JA (2008) 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J 53:102–114

    Article  CAS  PubMed  Google Scholar 

  • Lather B, Saini M, Punia M (2001) Hybrid cotton retrospect and prospects in Indian context. Nat J Plant Improv 3:61–68

    Google Scholar 

  • Latif A et al (2014) Genetics of yield and some yield contributing traits in Upland cotton (Gossypium hirsutum L.). J Plant Breed Crop Sci 6:57–63

    Article  Google Scholar 

  • Lee JH, Hübel A, Schöffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8:603–612

    Article  CAS  PubMed  Google Scholar 

  • Lewis H, May L, Bourland F (2000) Cotton yield components and yield stability. In: 2000 Proceedings Beltwide Cotton Conferences, San Antonio, USA, 4–8 January, 2000, National Cotton Council, Memphis, TN Vol 1 pp 532–536

    Google Scholar 

  • Liu Z, Yuan YL, Liu SQ, Yu XN, Rao LQ (2006) Screening for high‐temperature tolerant cotton cultivars by testing in vitro pollen germination, pollen tube growth and boll retention. J Integr Plant Biol 48:706–714

    Article  Google Scholar 

  • Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34:738–751

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Malik MN, Chaudhry FI, Makhdum MI (1999) Cell membrane thermostability as a measure of heat-tolerance in cotton. Pak J Sci Indus Res 42:44–46

    Google Scholar 

  • Marchand FL, Mertens S, Kockelbergh F, Beyens L, Nijs I (2005) Performance of High Arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Glob Chang Biol 11:2078–2089

    Article  PubMed  Google Scholar 

  • McCarty JC, Jenkins JN, Wu J (2004) Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement. Crop Sci 44:1226–1230

    Article  Google Scholar 

  • McDaniel R (1982) The physiology of temperature effects on plants. In: Breeding plants for less favorable environments. John Wiley and Sons, New York, NY

    Google Scholar 

  • Mellman DL, Gonzales ML, Song C, Barlow CA, Wang P, Kendziorski C, Anderson RA (2008) A PtdIns4, 5P2-regulated nuclear poly (A) polymerase controls expression of select mRNAs. Nature 451:1013

    Article  CAS  PubMed  Google Scholar 

  • Meredith WR (1984) Influence of leaf morphology on lint yield of cotton-enhancement by the sub okra trait 1. Crop Sci 24:855–857

    Article  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 51:656–669

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AR, Tarpley L (2010) Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. Eur J Agron 33:117–123

    Article  Google Scholar 

  • Moreno AA, Orellana A (2011) The physiological role of the unfolded protein response in plants. Biol Res 44:75–80

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17. 7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed 13:165–175

    Article  CAS  Google Scholar 

  • Murtaza N (2006) Study of gene effects for boll number, boll weight, and seed index in cotton. J Cent Eur Agric 6:255–262

    Google Scholar 

  • Murtaza N, Qayyum A, Malik W, Noor E (2006) Genetic study of yield of seed cotton and plant height in cotton genotypes. Int J Agric Biol 8:630–635

    Google Scholar 

  • Mutters R, Ferreira L, Hall A (1989) Proline content of the anthers and pollen of heat-tolerant and heat-sensitive cowpea subjected to different temperatures. Crop Sci 29:1497–1500

    Article  CAS  Google Scholar 

  • Nahar K, Ahamed KU, Fujita M (2010) Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Not Sci Biol 2:51–56

    Article  Google Scholar 

  • Nathan B, Oosterhuis DM, McMichael B (2005) Genotypic root responce of cotton at sub-optimal temperature environments. The ASA-CSSA-SSSA International Annual Meetings (November 6-10, 2005)

    Google Scholar 

  • Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf K-D (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyquist WE, Baker R (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Omae H, Kumar A, Shono M (2012) Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. J Bot 2012:803413

    Google Scholar 

  • Oosterhuis DM (1999) Yield response to environmental extremes in cotton. Spec Rep Univ Arkan Agric Exp Stat 193:30–38

    Google Scholar 

  • Oosterhuis D (2002) Day or night high temperatures: a major cause of yield variability. Cott Grow 46:8–9

    Google Scholar 

  • Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi-Kobayashi M, Higashitani A (2007) Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Genet Genomics 278:31–42

    Article  CAS  PubMed  Google Scholar 

  • Pagamas P, Nawata E (2008) Sensitive stages of fruit and seed development of chili pepper (Capsicum annuum L. var. Shishito) exposed to high-temperature stress. Sci Hortic 117:21–25

    Article  CAS  Google Scholar 

  • Paulsen GM (1994) High temperature responses of crop plants J Physiology determination of crop yield. In: Boote KJ, Bennett JM, Sinclair TR, Paulsen GM (eds) Physiology and determination of crop yield. American Society of Agronomy, Madison, WI, pp 365–389

    Google Scholar 

  • Pettigrew W (2004) Physiological consequences of moisture deficit stress in cotton. Crop Sci 44:1265–1272

    Article  Google Scholar 

  • Pettigrew W, Heitholt J, Vaughn K (1993) Gas exchange differences and comparative anatomy among cotton leaf-type isolines. Crop Sci 33:1295–1299

    Article  Google Scholar 

  • Porch T, Jahn M (2001) Effects of high‐temperature stress on microsporogenesis in heat‐sensitive and heat‐tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ 24:723–731

    Article  Google Scholar 

  • Prasad PVV, Craufurd PQ, Kakani VG, Wheeler TR, Boote K (2001) Influence of high temperature during pre-and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. J Funct Plant Biol 28:233–240

    Article  Google Scholar 

  • Prasad P, Boote K, Allen L Jr, Sheehy J, Thomas J (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop Res 95:398–411

    Article  Google Scholar 

  • Prasinos C, Krampis K, Samakovli D, Hatzopoulos P (2004) Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development. J Exp Bot 56:633–644

    Article  PubMed  CAS  Google Scholar 

  • Pressman E, Peet MM, Pharr DM (2002) The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann Bot 90:631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin F et al (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. Plant Cell 20:1693–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raison J, Berry J, Armond P, Pike C (1980) Membrane properties in relation to the adaptation of plants to temperature stress. John Wiley and Sons, Inc, New York, NY

    Google Scholar 

  • Rana V, Ram S, Nehra K (2017) Review proline biosynthesis and its role in abiotic stress. Int J Agric Innov Res 6:473–478

    Google Scholar 

  • Reddy V, Baker D, Hodges H (1991) Temperature effects on cotton canopy growth, photosynthesis, and respiration. Agron J 83:699–704

    Article  Google Scholar 

  • Reddy KR, Hodges HF, McKinion JM (1997) Crop modeling and applications: a cotton example. Adv Agron 59:226–290

    Google Scholar 

  • Reddy KR, Davidonis GH, Johnson AS, Vinyard BT (1999) Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agron J 91:851–858

    Article  Google Scholar 

  • Reynolds M, Balota M, Delgado M, Amani I, Fischer R (1994) Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Funct Plant Biol 21:717–730

    Article  Google Scholar 

  • Reynolds M, Ortiz-Monasterio I, McNab A (Eds) (2001) Application of physiology in wheat breeding. CIMMYT, Mexico

    Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Apl 22:1–10

    Google Scholar 

  • Saini H, Sedgley M, Aspinall D (1984) Development anatomy in wheat of male sterility induced by heat stress, water deficit or abscisic acid. Funct Plant Biol 11:243–253

    Article  Google Scholar 

  • Sakata T et al (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107:8569–8574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat‐shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268

    Article  CAS  PubMed  Google Scholar 

  • Saranga YE, Jiang CX, Wright R, Yakir D, Paterson A (2004) Genetic dissection of cotton physiological responses to arid conditions and their inter‐relationships with productivity. Plant Cell Environ 27:263–277

    Article  CAS  Google Scholar 

  • Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97:731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Prasad PV, Sunita K, Giri S, Reddy KR (2007) Influence of high temperature and breeding for heat tolerance in cotton: A review. Adv Agron 93:313–385

    Article  CAS  Google Scholar 

  • Soliman WS, Fujimori M, Tase K, Sugiyama S (2011) Oxidative stress and physiological damage under prolonged heat stress in C3 grass Lolium perenne. Grassl Sci 57:101–106

    Article  CAS  Google Scholar 

  • Srivastava S, Pathak AD, Gupta PS, Shrivastava AK, Srivastava AK (2012) Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J Environ Biol 33:657

    CAS  PubMed  Google Scholar 

  • Staiger CJ, Blanchoin L (2006) Actin dynamics: old friends with new stories. Curr Opin Plant Biol 9:554–562

    Article  CAS  PubMed  Google Scholar 

  • Sullivan CY (1972) Mechanisms of heat and drought resistance in grain sorghum and methods of measurement. Sorghum in seventies. Oxford & IBH Pub Co. London

    Google Scholar 

  • Sumesh K, Sharma-Natu P, Ghildiyal M (2008) Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. Biol Plant 52:749–753

    Article  CAS  Google Scholar 

  • Suzuki K, Takeda H, Tsukaguchi T, Egawa Y (2001) Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress. Sex Plant Reprod 13:293–299

    Article  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Toh S et al (2008) High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol 146:1368–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Török Z et al (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci USA 98:3098–3103

    Article  PubMed  PubMed Central  Google Scholar 

  • ur Rahman H, Malik SA, Saleem M (2004) Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crop Res 85:149–158

    Article  Google Scholar 

  • Van Ploeg D, Heuvelink E (2005) Influence of sub-optimal temperature on tomato growth and yield: a review. J Hortic Sci Biotechnol 80:652–659

    Article  Google Scholar 

  • Vasil IK (1987) Developing cell and tissue culture systems for the improvement of cereal and grass crops. J Plant Physiol 128:193–218

    Article  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider P, Günthardt-Goerg MS (2005) Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut 137:455–465

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Cui L, Wang Y, Li J (2009) Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol Plant 53:237–242

    Article  CAS  Google Scholar 

  • Wang Y, Sun F, Cao H, Peng H, Ni Z, Sun Q, Yao Y (2012) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One 7:e48445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells R, Meredith WR, Williford JR (1986) Canopy photosynthesis and its relationship to plant productivity in near-isogenic cotton lines differing in leaf morphology. Plant Physiol 82:635–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Grover CE (2015) Taxonomy and evolution of the cotton genus, Gossypium. In: Fang DD, Percy RG (eds) Cotton, 2nd edn. American Society of Agronomy, Madison, WI, pp 25–44

    Google Scholar 

  • Willits D, Peet M (1998) The effect of night temperature on greenhouse grown tomato yields in warm climates. J Agric For Meteorol 92:191–202

    Article  Google Scholar 

  • Yan K et al (2012) Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol Cell 48:521–531

    Article  CAS  PubMed  Google Scholar 

  • Yang X et al (2006) Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Sci 171:389–397

    Article  CAS  PubMed  Google Scholar 

  • Yeh C-H, Kaplinsky NJ, Hu C, Charng Y-Y (2012) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci 195:10–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Satake T, Mackill D (1981) High-temperature stress in rice [study conducted at IRRI, Philippines]. IRRI Res Paper Ser

    Google Scholar 

  • Yun-Ying C, Hua D, Li-Nian Y, Zhi-Qing W, Shao-Chuan Z, Jian-Chang Y (2008) Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agron Sin 34:2134–2142

    Article  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonia L, Munnik T (2006) Cracking the green paradigm: functional coding of phosphoinositide signals in plant stress responses. In: Biology of inositols and phosphoinositides. Springer, New York, NY, pp 207–237

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad-38040-Pakistan and Punjab Agricultural Research Board, Government of Punjab-Pakistan for providing a research grant under CAS-PARB Project No. 964.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salman, M., Majeed, S., Rana, I.A., Atif, R.M., Azhar, M.T. (2019). Novel Breeding and Biotechnological Approaches to Mitigate the Effects of Heat Stress on Cotton. In: Wani, S. (eds) Recent Approaches in Omics for Plant Resilience to Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-21687-0_11

Download citation

Publish with us

Policies and ethics