Skip to main content

Genetic Factors Affecting Sperm Chromatin Structure

  • Chapter
  • First Online:
Genetic Damage in Human Spermatozoa

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1166))

Abstract

Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.

In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinloye O, Gromoll J, Callies C, Nieschlag E, Simoni M (2007) Mutation analysis of the X-chromosome linked, testis-specific TAF7L gene in spermatogenic failure. Andrologia 39:190–195

    Article  CAS  PubMed  Google Scholar 

  • Aoki VW, Liu L, Jones KP, Hatasaka HH, Gibson M, Peterson CM, Carrell DT (2006) Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril 86:1408–1415

    Article  CAS  PubMed  Google Scholar 

  • Aston KI, Krausz C, Laface I, Ruiz-Castane E, Carrell DT (2010) Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod 25:1383–1397

    Article  CAS  PubMed  Google Scholar 

  • Audouard C, Christians E (2011) Hsp90beta1 knockout targeted to male germline: a mouse model for globozoospermia. Fertil Steril 95:1475–7 e1–1475–7 e4

    Article  CAS  Google Scholar 

  • Awe S, Renkawitz-Pohl R (2010) Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster. Syst Biol Reprod Med 56:44–61

    Article  CAS  PubMed  Google Scholar 

  • Baarends WM, Hoogerbrugge JW, Roest HP, Oooms M, Vreeburg J, Hoeijmakers JHJ, Grootegoed JA (1999) Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol 207:322–333

    Article  CAS  PubMed  Google Scholar 

  • Baarends WM, Wassenaar E, Hoogerbrugge JW, Van Cappellen G, Roest HP, Vreeburg J, Ooms M, Hoeijmakers JH, Grootegoed JA (2003) Loss of HR6B ubiquitin-conjugating activity results in damaged synaptonemal complex structure and increased crossing-over frequency during the male meiotic prophase. Mol Cell Biol 23:1151–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai S, Fu K, Yin H, Cui Y, Yue Q, Li W, Cheng L, Tan H, Liu X, Guo Y, Zhang Y, Xie J, He W, Wang Y, Feng H, Xin C, Zhang J, Lin M, Shen B, Sun Z, Guo X, Zheng K, Ye L (2019, 10) Sox30 initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes. Development 146

    Google Scholar 

  • Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8:227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balhorn R, Gledhill BL, Wyrobek AJ (1977) Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry 16:4074–4080

    Article  CAS  PubMed  Google Scholar 

  • Balhorn R, Reed S, Tanphaichitr N (1988) Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia 44:52–55

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Rousseaux S, Shen J, Lin K, Lu Y, Bedford MT (2018) The arginine methyltransferase CARM1 represses p300∗ACT∗CREMtau activity and is required for spermiogenesis. Nucleic Acids Res 46:4327–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barral S, Morozumi Y, Tanaka H, Montellier E, Govin J, De Dieuleveult M, Charbonnier G, Coute Y, Puthier D, Buchou T, Boussouar F, Urahama T, Fenaille F, Curtet S, Hery P, Fernandez-Nunez N, Shiota H, Gerard M, Rousseaux S, Kurumizaka H, Khochbin S (2017) Histone variant H2A.L.2 guides transition protein-dependent protamine assembly in male germ cells. Mol Cell 66:89–101 e8

    Article  CAS  PubMed  Google Scholar 

  • Baumeister P, Luo S, Skarnes WC, Sui G, Seto E, Shi Y, Lee AS (2005) Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol Cell Biol 25:4529–4540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell EL, Nagamori I, Williams EO, Del Rosario AM, Bryson BD, Watson N, White FM, Sassone-Corsi P, Guarente L (2014) SirT1 is required in the male germ cell for differentiation and fecundity in mice. Development 141:3495–3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Khelifa M, Zouari R, Harbuz R, Halouani L, Arnoult C, Lunardi J, Ray PF (2011) A new AURKC mutation causing macrozoospermia: implications for human spermatogenesis and clinical diagnosis. Mol Hum Reprod 17:762–768

    Article  CAS  PubMed  Google Scholar 

  • Blendy JA, Kaestner KH, Weinbauer GF, Nieschlag E, Schütz G (1996) Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 380:162–165

    Article  CAS  PubMed  Google Scholar 

  • Boussouar F, Goudarzi A, Buchou T, Shiota H, Barral S, Debernardi A, Guardiola P, Brindle P, Martinez G, Arnoult C, Khochbin S, Rousseaux S (2014) A specific CBP/p300-dependent gene expression programme drives the metabolic remodelling in late stages of spermatogenesis. Andrology 2:351–359

    Article  CAS  PubMed  Google Scholar 

  • Braun RE (2001) Packaging paternal chromosomes with protamine. Nature Genetics 28:10–12

    CAS  PubMed  Google Scholar 

  • Braun RE, Behringer RR, Peschon JJ, Brinster RL, Palmiter RD (1989) Genetically haploid spermatids are phenotypically diploid. Nature 337:373–376

    Article  CAS  PubMed  Google Scholar 

  • Brewer L, Corzett M, Balhorn R (2002) Condensation of DNA by spermatid basic nuclear proteins. J Biol Chem 277:38895–38900

    Article  CAS  PubMed  Google Scholar 

  • Brunner AM, Nanni P, Mansuy IM (2014) Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin 7:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schubeler D, Stadler MB, Peters AH (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679–687

    Article  CAS  PubMed  Google Scholar 

  • Caron C, Pivot-Pajot C, Van Grunsven LA, Col E, Lestrat C, Rousseaux S, Khochbin S (2003) Cdyl: a new transcriptional co-repressor. EMBO Rep 4:877–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carone BR, Hung JH, Hainer SJ, Chou MT, Carone DM, Weng Z, Fazzio TG, Rando OJ (2014) High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell 30:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrell DT, Emery BR, Hammoud S (2007) Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update 13:313–327

    Article  CAS  PubMed  Google Scholar 

  • Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A (2018) A decade of exploring the mammalian sperm epigenome: paternal epigenetic and transgenerational inheritance. Front Cell Dev Biol 6:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W, Zhao Y (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 6:812–819

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T, Wang Q, Xie N, Hua R, Liu M, Sha J, Griswold MD, Li J, Tang F, Tong MH (2018) Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res 28:879–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Buffone MG, Kouadio M, Goodheart M, Page DC, Gerton GL, Davidson I, Wang PJ (2007) Abnormal sperm in mice lacking the taf7l gene. Mol Cell Biol 27:2582–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chioccarelli T, Cacciola G, Altucci L, Lewis SE, Simon L, Ricci G, Ledent C, Meccariello R, Fasano S, Pierantoni R, Cobellis G (2010) Cannabinoid receptor 1 influences chromatin remodeling in mouse spermatids by affecting content of transition protein 2 mRNA and histone displacement. Endocrinology 151:5017–5029

    Article  CAS  PubMed  Google Scholar 

  • Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM (2001) Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet 28:82–86

    CAS  PubMed  Google Scholar 

  • Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, Schultz RM, Hecht NB, Eddy EM (2003) Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod 69:211–7

    Google Scholar 

  • da Cruz I, Rodriguez-Casuriaga R, Santinaque FF, Farias J, Curti G, Capoano CA, Folle GA, Benavente R, Sotelo-Silveira JR, Geisinger A (2016) Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage. BMC Genomics 17:294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dadoune JP (2003) Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech 61:56–75

    Article  CAS  PubMed  Google Scholar 

  • Dam AH, Koscinski I, Kremer JA, Moutou C, Jaeger AS, Oudakker AR, Tournaye H, Charlet N, Lagier-Tourenne C, Van Bokhoven H, Viville S (2007) Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet 81:813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davila Garza SA, Patrizio P (2013) Reproductive outcomes in patients with male infertility because of Klinefelter's syndrome, Kartagener's syndrome, round-head sperm, dysplasia fibrous sheath, and 'stump' tail sperm: an updated literature review. Curr Opin Obstet Gynecol 25:229–246

    Article  CAS  PubMed  Google Scholar 

  • De Vries M, Ramos L, Housein Z, De Boer P (2012) Chromatin remodelling initiation during human spermiogenesis. Biol Open 1:446–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830

    Article  CAS  PubMed  Google Scholar 

  • Dieterich K, Soto Rifo R, Faure AK, Hennebicq S, Ben Amar B, Zahi M, Perrin J, Martinez D, Sele B, Jouk PS, Ohlmann T, Rousseaux S, Lunardi J, Ray PF (2007) Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet 39:661–665

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Isono KI, Ohbo K, Endo TA, Ohara O, Maekawa M, Toyama Y, Ito C, Toshimori K, Helin K, Ogonuki N, Inoue K, Ogura A, Yamagata K, Kitabayashi I, Koseki H (2017) EPC1/TIP60-mediated histone acetylation facilitates spermiogenesis in mice. Mol Cell Biol 37(19)

    Google Scholar 

  • Doran J, Walters C, Kyle V, Wooding P, Hammett-Burke R, Colledge WH (2016) Mfsd14a (Hiat1) gene disruption causes globozoospermia and infertility in male mice. Reproduction 152:91–99

    Article  CAS  PubMed  Google Scholar 

  • Dottermusch-Heidel C, Gartner SM, Tegeder I, Rathke C, Barckmann B, Bartkuhn M, Bhushan S, Steger K, Meinhardt A, Renkawitz-Pohl R (2014a) H3K79 methylation: a new conserved mark that accompanies H4 hyperacetylation prior to histone-to-protamine transition in Drosophila and rat. Biol Open 3:444–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dottermusch-Heidel C, Klaus ES, Gonzalez NH, Bhushan S, Meinhardt A, Bergmann M, Renkawitz-Pohl R, Rathke C, Steger K (2014b) H3K79 methylation directly precedes the histone-to-protamine transition in mammalian spermatids and is sensitive to bacterial infections. Andrology 2:655–665

    Article  CAS  PubMed  Google Scholar 

  • Doyen CM, Moshkin YM, Chalkley GE, Bezstarosti K, Demmers JA, Rathke C, Renkawitz-Pohl R, Verrijzer CP (2013) Subunits of the histone chaperone CAF1 also mediate assembly of protamine-based chromatin. Cell Rep 4:59–65

    Article  CAS  PubMed  Google Scholar 

  • El Kennani S, Adrait A, Permiakova O, Hesse AM, Ialy-Radio C, Ferro M, Brun V, Cocquet J, Govin J, Pflieger D (2018) Systematic quantitative analysis of H2A and H2B variants by targeted proteomics. Epigenetics Chromatin 11:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Zowalaty AE, Baumann C, Li R, Chen W, De La Fuente R, Ye X (2015) Seipin deficiency increases chromocenter fragmentation and disrupts acrosome formation leading to male infertility. Cell Death Dis 6:e1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J, Schubeler D, Van Der Vlag J, Stadler MB, Peters AH (2013) Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 20:868–875

    Article  CAS  PubMed  Google Scholar 

  • Feng CA, Spiller C, Merriner DJ, O'Bryan MK, Bowles J, Koopman P (2017) SOX30 is required for male fertility in mice. Sci Rep 7:17619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508

    Article  CAS  PubMed  Google Scholar 

  • Fujihara Y, Oji A, Larasati T, Kojima-Kita K, Ikawa M (2017) Human globozoospermia-related gene spata16 is required for sperm formation revealed by CRISPR/Cas9-mediated mouse models. Int J Mol Sci 18(10)

    Google Scholar 

  • Funaki T, Kon S, Tanabe K, Natsume W, Sato S, Shimizu T, Yoshida N, Wong WF, Ogura A, Ogawa T, Inoue K, Ogonuki N, Miki H, Mochida K, Endoh K, Yomogida K, Fukumoto M, Horai R, Iwakura Y, Ito C, Toshimori K, Watanabe T, Satake M (2013) The Arf GAP SMAP2 is necessary for organized vesicle budding from the trans-Golgi network and subsequent acrosome formation in spermiogenesis. Mol Biol Cell 24:2633–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM (1990) Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem 265:20662–20666

    CAS  PubMed  Google Scholar 

  • Gaucher J, Boussouar F, Montellier E, Curtet S, Buchou T, Bertrand S, Hery P, Jounier S, Depaux A, Vitte AL, Guardiola P, Pernet K, Debernardi A, Lopez F, Holota H, Imbert J, Wolgemuth DJ, Gerard M, Rousseaux S, Khochbin S (2012) Bromodomain-dependent stage-specific male genome programming by Brdt. EMBO J 31:3809–3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godmann M, Auger V, Ferraroni-Aguiar V, Di Sauro A, Sette C, Behr R, Kimmins S (2007) Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermatogenesis. Biol Reprod 77:754–764

    Article  CAS  PubMed  Google Scholar 

  • Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua MM, Lu Y, Zhu Y, Li Z, Chen H, Wu LG, Li D, Fu XD, Li J, Shi HJ, Liu MF (2017) Ubiquitination-deficient mutations in human piwi cause male infertility by impairing histone-to-protamine xchange during spermiogenesis. Cell 169:1090–1104 e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goudarzi A, Zhang D, Huang H, Barral S, Kwon OK, Qi S, Tang Z, Buchou T, Vitte AL, He T, Cheng Z, Montellier E, Gaucher J, Curtet S, Debernardi A, Charbonnier G, Puthier D, Petosa C, Panne D, Rousseaux S, Roeder RG, Zhao Y, Khochbin S (2016) Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol Cell 62:169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govin J, Lestrat C, Caron C, Pivot-Pajot C, Rousseaux S, Khochbin S (2006) Histone acetylation-mediated chromatin compaction during mouse spermatogenesis. Ernst Schering Res Found Workshop (57):155–172

    Google Scholar 

  • Gupta N, Madapura MP, Bhat UA, Rao MR (2015) Mapping of post-translational modifications of transition proteins, TP1 and TP2, and identification of protein arginine methyltransferase 4 and lysine methyltransferase 7 as methyltransferase for TP2. J Biol Chem 290:12101–12122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han F, Liu C, Zhang L, Chen M, Zhou Y, Qin Y, Wang Y, Chen M, Duo S, Cui X, Bao S, Gao F (2017) Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death Dis 8:e2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sele B, Khochbin S, Rousseaux S (2000) Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol 79:950–960

    Article  CAS  PubMed  Google Scholar 

  • Hecht NB (1990) Regulation of ‘haploid expressed genes’ in male germ cells. J Reprod Fert 88:679–693

    Article  CAS  Google Scholar 

  • Hernandez-Hernandez A, Lilienthal I, Fukuda N, Galjart N, Hoog C (2016) CTCF contributes in a critical way to spermatogenesis and male fertility. Sci Rep 6:28355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihara M, Meyer-Ficca ML, Leu NA, Rao S, Li F, Gregory BD, Zalenskaya IA, Schultz RM, Meyer RG (2014) Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet 10:e1004317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jha KN, Tripurani SK, Johnson GR (2017) TSSK6 is required for gammaH2AX formation and the histone-to-protamine transition during spermiogenesis. J Cell Sci 130:1835–1844

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Gao Q, Zheng W, Yin S, Wang L, Zhong L, Ali A, Khan T, Hao Q, Fang H, Sun X, Xu P, Pandita TK, Jiang X, Shi Q (2018) MOF influences meiotic expansion of H2AX phosphorylation and spermatogenesis in mice. PLoS Genet 14:e1007300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang M, Gao M, Wu C, He H, Guo X, Zhou Z, Yang H, Xiao X, Liu G, Sha J (2014) Lack of testicular seipin causes teratozoospermia syndrome in men. Proc Natl Acad Sci U S A 111:7054–7059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang-Decker N, Mantchev GT, Juneja SC, Mcniven MA, Van Deursen JM (2001) Lack of acrosome formation in Hrb-deficient mice. Science 294:1531–1533

    Article  CAS  PubMed  Google Scholar 

  • Kashiwabara S, Noguchi J, Zhuang T, Ohmura K, Honda A, Sugiura S, Miyamoto K, Takahashi S, Inoue K, Ogura A, Baba T (2002) Regulation of spermatogenesis by testis-specific, cytoplasmic poly(A) polymerase TPAP. Science 298:1999–2002

    Article  CAS  PubMed  Google Scholar 

  • Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, Maggi LB Jr, White JM, Walker LM, Carnes K, Hess RA, Sleckman BP (2006) Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol 26:2999–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kierszenbaum AL, Rivkin E, Tres LL (2003) Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 14:4628–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmins S, Crosio C, Kotaja N, Hirayama J, Monaco L, Hoog C, Van Duin M, Gossen JA, Sassone-Corsi P (2007) Differential functions of the Aurora-B and Aurora-C kinases in mammalian spermatogenesis. Mol Endocrinol 21:726–739

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Ito C, Watanabe S, Takahashi T, Ikawa M, Yomogida K, Fujita Y, Ikeuchi M, Asada N, Matsumiya K, Okuyama A, Okabe M, Toshimori K, Nakano T (2003) Mouse germ cell-less as an essential component for nuclear integrity. Mol Cell Biol 23:1304–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kistler WS, Baas D, Lemeille S, Paschaki M, Seguin-Estevez Q, Barras E, Ma W, Duteyrat JL, Morle L, Durand B, Reith W (2015) RFX2 Is a major transcriptional regulator of spermiogenesis. PLoS Genet 11:e1005368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kleene KC (1989) Poly(A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse. Development 106:367–373

    CAS  PubMed  Google Scholar 

  • Kleene KC (2013) Connecting cis-elements and trans-factors with mechanisms of developmental regulation of mRNA translation in meiotic and haploid mammalian spermatogenic cells. Reproduction 146:R1–19

    Article  PubMed  CAS  Google Scholar 

  • Koizumi H, Yamaguchi N, Hattori M, Ishikawa TO, Aoki J, Taketo MM, Inoue K, Arai H (2003) Targeted disruption of intracellular type I platelet activating factor-acetylhydrolase catalytic subunits causes severe impairment in spermatogenesis. J Biol Chem 278:12489–12494

    Article  CAS  PubMed  Google Scholar 

  • Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N (2011) Dicer is required for haploid male germ cell differentiation in mice. PLoS One 6:e24821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotaja N, De Cesare D, Macho B, Monaco L, Brancorsini S, Goossens E, Tournaye H, Gansmuller A, Sassone-Corsi P (2004) Abnormal sperm in mice with targeted deletion of the act (activator of cAMP-responsive element modulator in testis) gene. Proc Natl Acad Sci U S A 101:10620–10625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahn BT, Tang ZL, Zhou J, Barndt RJ, Parvinen M, Allis CD, Page DC (2002) Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci U S A 99:8707–8712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leduc F, Maquennehan V, Nkoma GB, Boissonneault G (2008) DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod 78:324–332

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Fajardo MA, Braun RE (1996) A testis cytoplasmic RNA-binding protein that has the properties of a translational repressor. Mol Cell Biol 16:3023–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levesque D, Veilleux S, Caron N, Boissonneault G (1998) Architectural DNA-binding properties of the spermatidal transition proteins 1 and 2. Biochem Biophys Res Commun 252:602–609

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wu J, Kim SY, Zhao M, Hearn SA, Zhang MQ, Meistrich ML, Mills AA (2014) Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun 5:3812

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Sirotkin A, Skoultchi AI (2000) Normal spermatogenesis in mice lacking the testis-specific linker histone H1t. Mol Cell Biol 20:2122–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YN, Roy A, Yan W, Burns KH, Matzuk MM (2007) Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol 27:6794–6805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Shi QW, Lu GX (2010) A newly discovered mutation in PICK1 in a human with globozoospermia. Asian J Androl 12:556–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Yu H, Liu Y, Liu X, Zhang Y, Bu C, Yuan S, Chen Z, Xie G, Li W, Xu B, Yang J, He L, Jin T, Xiong Y, Sun L, Liu X, Han C, Cheng Z, Liang J, Shang Y (2017) Chromodomain protein CDYL acts as a crotonyl-CoA hydratase to regulate histone crotonylation and spermatogenesis. Mol Cell 67:853–866 e5

    Article  CAS  PubMed  Google Scholar 

  • Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X (2010) RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell 18:371–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Macho B, Brancorsini S, Fimia GM, Setou M, Hirokawa N, Sassone-Corsi P (2002) CREM-dependent transcription in male germ cells controlled by a kinesin. Science 298:2388–2390

    Article  CAS  PubMed  Google Scholar 

  • Mahadevaiah SK, Turner JMA, Baudat F, Rogakou EP, De Boer P, Blanco-Rodriguez J, Jasin M, Keeney S, Bonner WM, Burgoyne PS (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276

    Article  CAS  PubMed  Google Scholar 

  • Manterola M, Brown TM, Oh MY, Garyn C, Gonzalez BJ, Wolgemuth DJ (2018) BRDT is an essential epigenetic regulator for proper chromatin organization, silencing of sex chromosomes and crossover formation in male meiosis. PLoS Genet 14:e1007209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, Sassone-Corsi P, Davidson I (2005) Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proc Natl Acad Sci U S A 102:2808–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marushige K, Marushige Y, Wong TK (1976) Complete displacement of somatic histones during transformation of spermatid chromatin: a model experiment. Biochemistry 15:2047–2053

    Article  CAS  PubMed  Google Scholar 

  • Mcghee JD, Felsenfeld G (1980) Nucleosome structure. Annu Rev Biochem 49:1115–1156

    Article  CAS  PubMed  Google Scholar 

  • Mcgraw S, Morin G, Vigneault C, Leclerc P, Sirard MA (2007) Investigation of MYST4 histone acetyltransferase and its involvement in mammalian gametogenesis. BMC Dev Biol 7:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mcpherson SM, Longo FJ (1993) Nicking of rat spermatid and spermatozoa DNA: possible involvement of DNA topoisomerase II. Dev Biol 158:122–130

    Article  CAS  PubMed  Google Scholar 

  • Meetei AR, Ullas KS, Vasupradha V, Rao MR (2002) Involvement of protein kinase A in the phosphorylation of spermatidal protein TP2 and its effect on DNA condensation. Biochemistry 41:185–195

    Article  CAS  PubMed  Google Scholar 

  • Meikar O, Vagin VV, Chalmel F, Sostar K, Lardenois A, Hammell M, Jin Y, Da Ros M, Wasik KA, Toppari J, Hannon GJ, Kotaja N (2014) An atlas of chromatoid body components. RNA 20:483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer-Ficca ML, Ihara M, Lonchar JD, Meistrich ML, Austin CA, Min W, Wang ZQ, Meyer RG (2011a) Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biol Reprod 84:218–228

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG (2011b) Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod 84:900–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra LN, Shalini V, Gupta N, Ghosh K, Suthar N, Bhaduri U, Rao MRS (2018) Spermatid-specific linker histone HILS1 is a poor condenser of DNA and chromatin and preferentially associates with LINE-1 elements. Epigenetics Chromatin 11:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, Shiota H, Debernardi A, Hery P, Curtet S, Jamshidikia M, Barral S, Holota H, Bergon A, Lopez F, Guardiola P, Pernet K, Imbert J, Petosa C, Tan M, Zhao Y, Gerard M, Khochbin S (2013) Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev 27:1680–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti C, Serrentino ME, Ialy-Radio C, Delessard M, Soboleva TA, Tores F, Leduc M, Nitschke P, Drevet JR, Tremethick DJ, Vaiman D, Kocer A, Cocquet J (2017) SLY regulates genes involved in chromatin remodeling and interacts with TBL1XR1 during sperm differentiation. Cell Death Differ 24:1029–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulugeta Achame E, Wassenaar E, Hoogerbrugge JW, Sleddens-Linkels E, Ooms M, Sun ZW, Van IWF, Grootegoed JA, Baarends WM (2010) The ubiquitin-conjugating enzyme HR6B is required for maintenance of X chromosome silencing in mouse spermatocytes and spermatids. BMC Genomics 11:367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nair M, Nagamori I, Sun P, Mishra DP, Rheaume C, Li B, Sassone-Corsi P, Dai X (2008) Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol 320:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nantel F, Monaco L, Foulkes NS, Masquiller D, Lemeur M, Henriksén K, Dierich A, Parvinen M, Sassone-Corsi P (1996) Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380:159–162

    Article  CAS  PubMed  Google Scholar 

  • Nayernia K, Vauti F, Meinhardt A, Cadenas C, Schweyer S, Meyer BI, Schwandt I, Chowdhury K, Engel W, Arnold HH (2003) Inactivation of a testis-specific Lis1 transcript in mice prevents spermatid differentiation and causes male infertility. J Biol Chem 278:48377–48385

    Article  CAS  PubMed  Google Scholar 

  • Nili E, Cojocaru GS, Kalma Y, Ginsberg D, Copeland NG, Gilbert DJ, Jenkins NA, Berger R, Shaklai S, Amariglio N, Brok-simoni F, Simon AJ, Rechavi G (2001) Nuclear membrane protein LAP2beta mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less). J Cell Sci 114:3297–3307

    CAS  PubMed  Google Scholar 

  • Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y (2007) Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450:119–123

    Article  CAS  PubMed  Google Scholar 

  • Oliva R, Bazett-Jones D, Mezquita C, Dixon GH (1987) Factors affecting nucleosome disassembly by protamines in vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem 262:17016–17025

    CAS  PubMed  Google Scholar 

  • Oliva R, Mezquita C (1986) Marked differences in the ability of distinct protamines to disassemble nucleosomal core particles in vitro. Biochemistry 25:6508–6511

    Article  CAS  PubMed  Google Scholar 

  • Paiardi C, Pasini ME, Gioria M, Berruti G (2011) Failure of acrosome formation and globozoospermia in the wobbler mouse, a Vps54 spontaneous recessive mutant. Spermatogenesis 1:52–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Pattabiraman S, Baumann C, Guisado D, Eppig JJ, Schimenti JC, De La Fuente R (2015) Mouse BRWD1 is critical for spermatid postmeiotic transcription and female meiotic chromosome stability. J Cell Biol 208:53–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philipps DL, Wigglesworth K, Hartford SA, Sun F, Pattabiraman S, Schimenti K, Handel M, Eppig JJ, Schimenti JC (2008) The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition. Dev Biol 317:72–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierre V, Martinez G, Coutton C, Delaroche J, Yassine S, Novella C, Pernet-Gallay K, Hennebicq S, Ray PF, Arnoult C (2012) Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development 139:2955–2965

    Article  CAS  PubMed  Google Scholar 

  • Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S (2003) Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol 23:5354–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradeepa MM, Nikhil G, Hari Kishore A, Bharath GN, Kundu TK, Rao MR (2009) Acetylation of transition protein 2 (TP2) by KAT3B (p300) alters its DNA condensation property and interaction with putative histone chaperone NPM3. J Biol Chem 284:29956–29967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, Wang GF, Zhu QQ, Song W, Yu Y, Zhang XX, Huang HT, Miao S, Chen LB, Zhang ZH, Liang YN, Liu S, Cha H, Yang D, Zhai Y, Komatsu T, Tsuruta F, Li H, Cao C, Li W, Li GH, Cheng Y, Chiba T, Wang L, Goldberg AL, Shen Y, Qiu XB (2013) Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153:1012–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R (2007) Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 120:1689–1700

    Article  CAS  PubMed  Google Scholar 

  • Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C (2017) Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet 91:217–232

    Article  CAS  PubMed  Google Scholar 

  • Roca J, Mezquita C (1989) DNA topoisomerase II activity in nonreplicating, transcriptionally inactive, chicken late spermatids. EMBO J 8:1855–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roest HP, Van Klaveren J, De Wit J, Van Gurp CG, Koken MH, Vermey M, Van Roijen JH, Hoogerbrugge JW, Vreeburg JT, Baarends WM, Bootsma D, Grootegoed JA, Hoeijmakers JH (1996) Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86:799–810

    Article  CAS  PubMed  Google Scholar 

  • Royo H, Stadler MB, Peters A (2016) Alternative computational analysis shows no evidence for nucleosome enrichment at repetitive sequences in mammalian spermatozoa. Dev Cell 37:98–104

    Article  CAS  PubMed  Google Scholar 

  • Russell LD, Hikim APS, Ettlin RA, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater

    Google Scholar 

  • Riel JM, Yamauchi Y, Sugawara A, Li HY, Ruthig V, Stoytcheva Z, Ellis PJ, Cocquet J, Ward MA (2013) Deficiency of the multi-copy mouse Y gene Sly causes sperm DNA damage and abnormal chromatin packaging. J Cell Sci 126:803–13

    Google Scholar 

  • Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H, Kong HE, Dai L, Shimada M, Cross JR, Zhao Y, Roeder RG, Allis CD (2015) Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell 58:203–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabari BR, Zhang D, Allis CD, Zhao Y (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18:90–101

    Article  CAS  PubMed  Google Scholar 

  • Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, Wolf E, Steger K, Dansranjavin T, Schagdarsurengin U (2014) Uniformity of nucleosome preservation pattern in Mammalian sperm and its connection to repetitive DNA elements. Dev Cell 30:23–35

    Article  CAS  PubMed  Google Scholar 

  • Sassone-Corsi P (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296:2176–2178

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Balbach M, Jan FJ, Fietz D, Nettersheim D, Jostes S, Schmidt R, Kressin M, Bergmann M, Wachten D, Steger K, Schorle H (2016) Re-visiting the Protamine-2 locus: deletion, but not haploinsufficiency, renders male mice infertile. Sci Rep 6:36764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sediva A, Smith CI, Asplund AC, Hadac J, Janda A, Zeman J, Hansikova H, Dvorakova L, Mrazova L, Velbri S, Koehler C, Roesch K, Sullivan KE, Futatani T, Ochs HD (2007) Contiguous X-chromosome deletion syndrome encompassing the BTK, TIMM8A, TAF7L, and DRP2 genes. J Clin Immunol 27:640–646

    Article  PubMed  Google Scholar 

  • Shang E, Nickerson HD, Wen D, Wang X, Wolgemuth DJ (2007) The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development 134:3507–3515

    Article  CAS  PubMed  Google Scholar 

  • Shinagawa T, Huynh LM, Takagi T, Tsukamoto D, Tomaru C, Kwak HG, Dohmae N, Noguchi J, Ishii S (2015) Disruption of Th2a and Th2b genes causes defects in spermatogenesis. Development 142:1287–1292

    Article  CAS  PubMed  Google Scholar 

  • Shiota H, Barral S, Buchou T, Tan M, Coute Y, Charbonnier G, Reynoird N, Boussouar F, Gerard M, Zhu M, Bargier L, Puthier D, Chuffart F, Bourova-Flin E, Picaud S, Filippakopoulos P, Goudarzi A, Ibrahim Z, Panne D, Rousseaux S, Zhao Y, Khochbin S (2018) Nut directs p300-dependent, genome-wide H4 hyperacetylation in male germ cells. Cell Rep 24:3477–3487 e6

    Article  CAS  PubMed  Google Scholar 

  • Siklenka K, Erkek S, Godmann M, Lambrot R, Mcgraw S, Lafleur C, Cohen T, Xia J, Suderman M, Hallett M, Trasler J, Peters AH, Kimmins S (2015) Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350(6261):aab2006

    Article  PubMed  CAS  Google Scholar 

  • Sin HS, Barski A, Zhang F, Kartashov AV, Nussenzweig A, Chen J, Andreassen PR, Namekawa SH (2012) RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Genes Dev 26:2737–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song N, Liu J, An S, Nishino T, Hishikawa Y, Koji T (2011) Immunohistochemical analysis of histone H3 modifications in germ cells during mouse spermatogenesis. Acta Histochem Cytochem 44:183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosnik J, Miranda PV, Spiridonov NA, Yoon SY, Fissore RA, Johnson GR, Visconti PE (2009) Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J Cell Sci 122:2741–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steger K (1999) Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol (Berl) 199:471–487

    Article  CAS  Google Scholar 

  • Takeda N, Yoshinaga K, Furushima K, Takamune K, Li Z, Abe S, Aizawa S, Yamamura K (2016) Viable offspring obtained from Prm1-deficient sperm in mice. Sci Rep 6:27409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Iguchi N, Isotani A, Kitamura K, Toyama Y, Matsuoka Y, Onishi M, Masai K, Maekawa M, Toshimori K, Okabe M, Nishimune Y (2005) HANP1/H1T2, a novel histone H1-like protein involved in nuclear formation and sperm fertility. Mol Cell Biol 25:7107–7119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang MC, Jacobs SA, Wong LH, Mann JR (2013) Conditional allelic replacement applied to genes encoding the histone variant H3.3 in the mouse. Genesis 51:142–146

    Article  CAS  PubMed  Google Scholar 

  • Teperek M, Simeone A, Gaggioli V, Miyamoto K, Allen GE, Erkek S, Kwon T, Marcotte EM, Zegerman P, Bradshaw CR, Peters AH, Gurdon JB, Jullien J (2016) Sperm is epigenetically programmed to regulate gene transcription in embryos. Genome Res 26:1034–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullas KS, Rao MR (2003) Phosphorylation of rat spermatidal protein TP2 by sperm-specific protein kinase A and modulation of its transport into the haploid nucleus. J Biol Chem 278:52673–52680

    Article  CAS  PubMed  Google Scholar 

  • Van Der Heijden GW, Derijck AA, Posfai E, Giele M, Pelczar P, Ramos L, Wansink DG, Van Der Vlag J, Peters AH, De Boer P (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39:251–258

    Article  PubMed  CAS  Google Scholar 

  • Vilfan ID, Conwell CC, Hud NV (2004) Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem 279:20088–20095

    Article  CAS  PubMed  Google Scholar 

  • Wan L, Hu XJ, Yan SX, Chen F, Cai B, Zhang XM, Wang T, Yu XB, Xiang AP, Li WQ (2013) Generation and neuronal differentiation of induced pluripotent stem cells in Cdyl-/- mice. Neuroreport 24:114–119

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhang H, Wang L, Wang Y, Huang H, Sun F (2015) Ca(2+)/calmodulin-dependent protein kinase IV promotes interplay of proteins in chromatoid body of male germ cells. Sci Rep 5:12126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Wan H, Li X, Liu W, Chen Q, Wang Y, Yang L, Tang H, Zhang X, Duan E, Zhao X, Gao F, Li W (2014) Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res 24:852–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward WS, Coffey DS (1991) DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44:569–574

    Article  CAS  PubMed  Google Scholar 

  • White-Cooper H, Davidson I (2011) Unique aspects of transcription regulation in male germ cells. Cold Spring Harb Perspect Biol 3(7)

    Google Scholar 

  • Willmitzer L, Bode J, Wagner KG (1977) Phosphorylated protamines. I. Binding stoichiometry and thermal stability of complexes in DNA. Nucleic Acids Res 4:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolffe AP (1997) Histone H1. Int J Biochem Cell Biol 29:1463–1466

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Means AR (2000) Ca(2+)/calmodulin-dependent protein kinase IV is expressed in spermatids and targeted to chromatin and the nuclear matrix. J Biol Chem 275:7994–7999

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Ribar TJ, Cummings DE, Burton KA, Mcknight GS, Means AR (2000) Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet 25:448–452

    Article  CAS  PubMed  Google Scholar 

  • Xiao N, Kam C, Shen C, Jin W, Wang J, Lee KM, Jiang L, Xia J (2009) PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest 119:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Toselli PA, Russell LD, Seldin DC (1999) Globozoospermia in mice lacking the casein kinase II alpha' catalytic subunit. Nat Genet 23:118–121

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Assadi AH, Wynshaw-Boris A, Eichele G, Matzuk MM, Clark GD (2003a) Previously uncharacterized roles of platelet-activating factor acetylhydrolase 1b complex in mouse spermatogenesis. Proc Natl Acad Sci U S A 100:7189–7194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W, Ma L, Burns KH, Matzuk MM (2003b) HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proc Natl Acad Sci U S A 100:10546–10551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato A, Toshimori K, Noda T (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A 99:11211–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yassine S, Escoffier J, Martinez G, Coutton C, Karaouzene T, Zouari R, Ravanat JL, Metzler-Guillemain C, Lee HC, Fissore R, Hennebicq S, Ray PF, Arnoult C (2015) Dpy19l2-deficient globozoospermic sperm display altered genome packaging and DNA damage that compromises the initiation of embryo development. Mol Hum Reprod 21:169–185

    Article  CAS  PubMed  Google Scholar 

  • Yildiz Y, Matern H, Thompson B, Allegood JC, Warren RL, Ramirez DM, Hammer RE, Hamra FK, Matern S, Russell DW (2006) Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J Clin Invest 116:2985–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Muratani M, Araki H, Miura F, Suzuki T, Dohmae N, Katou Y, Shirahige K, Ito T, Ishii S (2018) Mapping of histone-binding sites in histone replacement-completed spermatozoa. Nat Commun 9:3885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, Weil MM, Behringer R, Meistrich M (2000) Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci U S A 97:4683–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen BT, Bush KM, Barrilleaux BL, Cotterman R, Knoepfler PS (2014) Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development 141:3483–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi K, Hada M, Fukuda Y, Inoue E, Makino Y, Katou Y, Shirahige K, OKADA Y (2018) Re-evaluating the Localization of Sperm-Retained Histones Revealed the Modification-Dependent Accumulation in Specific Genome Regions. Cell Rep 23:3920–3932

    Google Scholar 

  • Zhang D, Penttila TL, Morris PL, Teichmann M, Roeder RG (2001) Spermiogenesis deficiency in mice lacking the Trf2 gene. Science 292:1153–1155

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Xie D, Lin X, Ma L, Chen J, Zhang D, Wang Y, Duo S, Feng Y, Zheng C, Jiang B, Ning Y, Han C (2018) The transcription factor SOX30 is a key regulator of mouse spermiogenesis. Development 145(11)

    Google Scholar 

  • Zhao M, Shirley CR, Hayashi S, Marcon L, Mohapatra B, Suganuma R, Behringer RR, Boissonneault G, Yanagimachi R, Meistrich ML (2004) Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis 38:200–213

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Shirley CR, Yu YE, Mohapatra B, Zhang Y, Unni E, Deng JM, Arango NA, Terry NH, Weil MM, Russell LD, Behringer RR, Meistrich ML (2001) Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol 21:7243–7255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong J, Peters AH, lee K, Braun RE (1999) A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells. Nat Genet 22:171–174

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Grubisic I, Zheng K, He Y, Wang PJ, Kaplan T, Tjian R (2013) Taf7l cooperates with Trf2 to regulate spermiogenesis. Proc Natl Acad Sci U S A 110:16886–16891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang T, Hess RA, Kolla V, Higashi M, Raabe TD, Brodeur GM (2014) CHD5 is required for spermiogenesis and chromatin condensation. Mech Dev 131:35–46

    Article  CAS  PubMed  Google Scholar 

  • Zuo X, Rong B, Li L, Lv R, Lan F, Tong MH (2018) The histone methyltransferase SETD2 is required for expression of acrosin-binding protein 1 and protamines and essential for spermiogenesis in mice. J Biol Chem 293:9188–9197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by INSERM and ANR-17-CE12-0004-01. We apologize to those authors whose work is not cited because of space considerations or, unfortunately, because of our ignorance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Cocquet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blanco, M., Cocquet, J. (2019). Genetic Factors Affecting Sperm Chromatin Structure. In: Baldi, E., Muratori, M. (eds) Genetic Damage in Human Spermatozoa. Advances in Experimental Medicine and Biology, vol 1166. Springer, Cham. https://doi.org/10.1007/978-3-030-21664-1_1

Download citation

Publish with us

Policies and ethics