Skip to main content

Placebo Hypoalgesic Effects and Genomics

  • Chapter
  • First Online:
Genomics of Pain and Co-Morbid Symptoms
  • 392 Accesses

Abstract

Genomic studies on the placebo hypoalgesic effects highlight a promising link between single nucleotide polymorphisms (SNPs) in the dopamine, opioid, and endocannabinoid genes and placebo hypoalgesia. Yet, epistasis, replication, GWAS, and omics studies are missing. In this chapter, we elaborate upon the state-of-the-science of the genomics of the placebo and nocebo effect across pain conditions and populations with a focus on current challenges and areas of future discovery. We indicate directions for future research that will help fully understand the complexity of placebo effects and molecular mechanisms that predict individuals who may display a placebo effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amanzio M, Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J Neurosci. 1999;19(1):484–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslaksen PM, Forsberg JT, Gjerstad J. The mu-opioid receptor gene OPRM1 as a genetic marker for placebo analgesia. bioRxiv. 2017:139345.

    Google Scholar 

  • Aslaksen PM, Forsberg JT, Gjerstad J. The opioid receptor mu 1 (OPRM1) rs1799971 and catechol-O-methyltransferase (COMT) rs4680 as genetic markers for placebo analgesia. Pain. 2018;159(12):2585–92.

    Article  CAS  PubMed  Google Scholar 

  • Attur M, Belitskaya-Levy I, Oh C, Krasnokutsky S, Greenberg J, Samuels J, et al. Increased interleukin-1beta gene expression in peripheral blood leukocytes is associated with increased pain and predicts risk for progression of symptomatic knee osteoarthritis. Arthritis Rheum. 2011;63(7):1908–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetti F. The opposite effects of the opiate antagonist naloxone and the cholecystokinin antagonist proglumide on placebo analgesia. Pain. 1996;64(3):535–43.

    Article  CAS  PubMed  Google Scholar 

  • Benedetti F, Colloca L, Torre E, Lanotte M, Melcarne A, Pesare M, et al. Placebo-responsive Parkinson patients show decreased activity in single neurons of subthalamic nucleus. Nat Neurosci. 2004;7(6):587–8.

    Article  CAS  PubMed  Google Scholar 

  • Benedetti F, Pollo A, Colloca L. Opioid-mediated placebo responses boost pain endurance and physical performance: is it doping in sport competitions? J Neurosci. 2007;27(44):11934–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetti F, Lanotte M, Colloca L, Ducati A, Zibetti M, Lopiano L. Electrophysiological properties of thalamic, subthalamic and nigral neurons during the anti-parkinsonian placebo response. J Physiol. 2009;587(Pt 15):3869–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetti F, Amanzio M, Rosato R, Blanchard C. Nonopioid placebo analgesia is mediated by CB1 cannabinoid receptors. Nat Med. 2011;17(10):1228–30.

    Article  CAS  PubMed  Google Scholar 

  • Benedetti F, Thoen W, Blanchard C, Vighetti S, Arduino C. Pain as a reward: changing the meaning of pain from negative to positive co-activates opioid and cannabinoid systems. Pain. 2013;154(3):361–7.

    Article  PubMed  Google Scholar 

  • Bielsky IF, Hu SB, Young LJ. Sexual dimorphism in the vasopressin system: lack of an altered behavioral phenotype in female V1a receptor knockout mice. Behav Brain Res. 2005;164(1):132–6.

    Article  CAS  PubMed  Google Scholar 

  • Bingel U, Lorenz J, Schoell E, Weiller C, Buchel C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain. 2006;120(1–2):8–15.

    Article  CAS  PubMed  Google Scholar 

  • Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514–6.

    Article  CAS  PubMed  Google Scholar 

  • Cajanus K, Holmstrom EJ, Wessman M, Anttila V, Kaunisto MA, Kalso E. Effect of endocannabinoid degradation on pain: role of FAAH polymorphisms in experimental and postoperative pain in women treated for breast cancer. Pain. 2016;157(2):361–9.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho C, Caetano JM, Cunha L, Rebouta P, Kaptchuk TJ, Kirsch I. Open-label placebo treatment in chronic low back pain: a randomized controlled trial. Pain. 2016;157(12):2766–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colagiuri B, Schenk LA, Kessler MD, Dorsey SG, Colloca L. The placebo effect: from concepts to genes. Neuroscience. 2015;307:171–90.

    Article  CAS  PubMed  Google Scholar 

  • Colloca L. Treatment of pediatric migraine. N Engl J Med. 2017;376(14):1387–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Colloca L. In: Colloca L, editor. Neurobiology of the placebo effect part I. 1st ed. Cambridge: Elsevier/Academic Press; 2018. 322 p.

    Google Scholar 

  • Colloca L. The placebo effect in pain therapies. Annu Rev Pharmacol Toxicol. 2019;59:191–211.

    Article  CAS  PubMed  Google Scholar 

  • Colloca L, Barsky AJ. Placebo and Nocebo Effects. N Engl J Med. 2020;382(6):554–61.

    Google Scholar 

  • Colloca L, Benedetti F. Placebos and painkillers: is mind as real as matter? Nat Rev Neurosci. 2005;6(7):545–52.

    Article  CAS  PubMed  Google Scholar 

  • Colloca L, Lopiano L, Lanotte M, Benedetti F. Overt versus covert treatment for pain, anxiety, and Parkinson’s disease. Lancet Neurol. 2004;3(11):679–84.

    Article  PubMed  Google Scholar 

  • Colloca L, Klinger R, Flor H, Bingel U. Placebo analgesia: psychological and neurobiological mechanisms. Pain. 2013;154(4):511–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Colloca L, Pine DS, Ernst M, Miller FG, Grillon C. Vasopressin boosts placebo analgesic effects in women: a randomized trial. Biol Psychiatry. 2016;79(10):794–802.

    Article  CAS  PubMed  Google Scholar 

  • Craggs JG, Price DD, Perlstein WM, Verne GN, Robinson ME. The dynamic mechanisms of placebo induced analgesia: evidence of sustained and transient regional involvement. Pain. 2008;139(3):660–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Fuente-Fernandez R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ. Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science. 2001;293(5532):1164–6.

    Article  PubMed  Google Scholar 

  • Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A, Belfer I, et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet. 2005;14(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson ZR, Young LJ. Oxytocin, vasopressin, and the neurogenetics of sociality. Science. 2008;322(5903):900–4.

    Article  CAS  PubMed  Google Scholar 

  • Ebstein RP, Israel S, Lerer E, Uzefovsky F, Shalev I, Gritsenko I, et al. Arginine vasopressin and oxytocin modulate human social behavior. Ann N Y Acad Sci. 2009;1167:87–102.

    Article  CAS  PubMed  Google Scholar 

  • Eippert F, Finsterbusch J, Bingel U, Buchel C. Direct evidence for spinal cord involvement in placebo analgesia. Science. 2009a;326(5951):404.

    Article  CAS  PubMed  Google Scholar 

  • Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron. 2009b;63(4):533–43.

    Article  CAS  PubMed  Google Scholar 

  • Eising E, Pelzer N, Vijfhuizen LS, Vries B, Ferrari MD, Hoen PA, et al. Identifying a gene expression signature of cluster headache in blood. Sci Rep. 2017;7:40218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst E, Resch KL. Concept of true and perceived placebo effects. BMJ. 1995;311(7004):551–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faasse K, Martin LR, Grey A, Gamble G, Petrie KJ. Impact of brand or generic labeling on medication effectiveness and side effects. Health Psychol. 2016;35(2):187–90.

    Article  PubMed  Google Scholar 

  • Feng C, Hackett PD, DeMarco AC, Chen X, Stair S, Haroon E, et al. Oxytocin and vasopressin effects on the neural response to social cooperation are modulated by sex in humans. Brain Imaging Behav. 2015;9(4):754–64.

    Article  PubMed  Google Scholar 

  • Ferris CF, Melloni RH Jr, Koppel G, Perry KW, Fuller RW, Delville Y. Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci. 1997;17(11):4331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields H. State-dependent opioid control of pain. Nat Rev Neurosci. 2004;5(7):565–75.

    Article  CAS  PubMed  Google Scholar 

  • Forsberg JT, Gjerstad J, Flaten MA, Aslaksen PM. Influence of catechol-o-methyltransferase Val158Met on fear of pain and placebo analgesia. Pain. 2018;159:168–74.

    Article  CAS  PubMed  Google Scholar 

  • Freeman SM, Walum H, Inoue K, Smith AL, Goodman MM, Bales KL, et al. Neuroanatomical distribution of oxytocin and vasopressin 1a receptors in the socially monogamous coppery titi monkey (Callicebus cupreus). Neuroscience. 2014;273:12–23.

    Article  CAS  PubMed  Google Scholar 

  • Gerring ZF, Powell JE, Montgomery GW, Nyholt DR. Genome-wide analysis of blood gene expression in migraine implicates immune-inflammatory pathways. Cephalalgia. 2018;38(2):292–303.

    Article  PubMed  Google Scholar 

  • Geuter S, Buchel C. Facilitation of pain in the human spinal cord by nocebo treatment. J Neurosci. 2013;33(34):13784–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobrogge KL, Liu Y, Young LJ, Wang Z. Anterior hypothalamic vasopressin regulates pair-bonding and drug-induced aggression in a monogamous rodent. Proc Natl Acad Sci U S A. 2009;106(45):19144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodson JL, Thompson RR. Nonapeptide mechanisms of social cognition, behavior and species-specific social systems. Curr Opin Neurobiol. 2010;20(6):784–94.

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Cole S, Labus JS, Joshi S, Nguyen TJ, Kilpatrick LA, et al. Gene expression profiles in peripheral blood mononuclear cells correlate with salience network activity in chronic visceral pain: a pilot study. Neurogastroenterol Motil. 2017;29(6):e13027.

    Article  CAS  Google Scholar 

  • Hall KT, Kaptchuk TJ. Genetic biomarkers of placebo response: what could it mean for future trial design? Clin Investig. 2013;3(4):311–4.

    Article  CAS  Google Scholar 

  • Hall KT, Lembo AJ, Kirsch I, Ziogas DC, Douaiher J, Jensen KB, et al. Catechol-O-Methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome. PLoS One. 2012;7(10):e48135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall KT, Loscalzo J, Kaptchuk TJ. Genetics and the placebo effect: the placebome. Trends Mol Med. 2015a;21(5):285–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall KT, Tolkin BR, Chinn GM, Kirsch I, Kelley JM, Lembo AJ, et al. Conscientiousness is modified by genetic variation in catechol-O-methyltransferase to reduce symptom complaints in IBS patients. Brain Behavior. 2015b;5(1):39–44.

    Article  PubMed  Google Scholar 

  • Hartvigsen J, Nielsen J, Kyvik KO, Fejer R, Vach W, Iachine I, et al. Heritability of spinal pain and consequences of spinal pain: a comprehensive genetic epidemiologic analysis using a population-based sample of 15,328 twins ages 20-71 years. Arthritis Rheum. 2009;61(10):1343–51.

    Article  PubMed  Google Scholar 

  • Hashmi JA, Baria AT, Baliki MN, Huang L, Schnitzer TJ, Apkarian AV. Brain networks predicting placebo analgesia in a clinical trial for chronic back pain. Pain. 2012;153(12):2393–402.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinrichs M, Domes G. Neuropeptides and social behaviour: effects of oxytocin and vasopressin in humans. Prog Brain Res. 2008;170:337–50.

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs M, von Dawans B, Domes G. Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol. 2009;30(4):548–57.

    Article  CAS  PubMed  Google Scholar 

  • Jarcho JM, Feier NA, Labus JS, Naliboff B, Smith SR, Hong JY, et al. Placebo analgesia: self-report measures and preliminary evidence of cortical dopamine release associated with placebo response. Neuroimage Clin. 2016;10:107–14.

    Article  PubMed  Google Scholar 

  • Jones KD, Gelbart T, Whisenant TC, Waalen J, Mondala TS, Ikle DN, et al. Genome-wide expression profiling in the peripheral blood of patients with fibromyalgia. Clin Exp Rheumatol. 2016;34(2 Suppl 96):S89–98.

    PubMed  Google Scholar 

  • Kam-Hansen S, Jakubowski M, Kelley JM, Kirsch I, Hoaglin DC, Kaptchuk TJ, et al. Altered placebo and drug labeling changes the outcome of episodic migraine attacks. Sci Transl Med. 2014;6(218):218ra5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaptchuk TJ, Kelley JM, Conboy LA, Davis RB, Kerr CE, Jacobson EE, et al. Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. BMJ. 2008;336(7651):999–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kessner S, Sprenger C, Wrobel N, Wiech K, Bingel U. Effect of oxytocin on placebo analgesia: a randomized study. JAMA. 2013;310(16):1733–5.

    Article  CAS  PubMed  Google Scholar 

  • Kogan A, Saslow LR, Impett EA, Oveis C, Keltner D, Saturn SR. Thin-slicing study of the oxytocin receptor (OXTR) gene and the evaluation and expression of the prosocial disposition. Proc Natl Acad Sci U S A. 2011;108(48):19189–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong J, Jensen K, Loiotile R, Cheetham A, Wey HY, Tan Y, et al. Functional connectivity of the frontoparietal network predicts cognitive modulation of pain. Pain. 2013;154(3):459–67.

    Article  PubMed  Google Scholar 

  • Krummenacher P, Candia V, Folkers G, Schedlowski M, Schonbachler G. Prefrontal cortex modulates placebo analgesia. Pain. 2010;148(3):368–74.

    Article  PubMed  Google Scholar 

  • Levine JD, Gordon NC. Influence of the method of drug administration on analgesic response. Nature. 1984;312(5996):755–6.

    Article  CAS  PubMed  Google Scholar 

  • Levine JD, Gordon NC, Fields HL. The mechanism of placebo analgesia. Lancet. 1978;2(8091):654–7.

    Article  CAS  PubMed  Google Scholar 

  • Lidstone SC, Schulzer M, Dinelle K, Mak E, Sossi V, Ruth TJ, et al. Effects of expectation on placebo-induced dopamine release in Parkinson disease. Arch Gen Psychiatry. 2010;67(8):857–65.

    Article  CAS  PubMed  Google Scholar 

  • Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I, et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry. 1995;34(13):4202–10.

    Article  CAS  PubMed  Google Scholar 

  • Lui F, Colloca L, Duzzi D, Anchisi D, Benedetti F, Porro CA. Neural bases of conditioned placebo analgesia. Pain. 2010;151(3):816–24.

    Article  PubMed  Google Scholar 

  • Lukkahatai N, Walitt B, Espina A, Wang D, Saligan LN. Comparing genomic profiles of women with and without fibromyalgia. Biol Res Nurs. 2015;17(4):373–83.

    Article  CAS  PubMed  Google Scholar 

  • Mathie RT, Ramparsad N, Legg LA, Clausen J, Moss S, Davidson JR, et al. Randomised, double-blind, placebo-controlled trials of non-individualised homeopathic treatment: systematic review and meta-analysis. Syst Rev. 2017;6(1):63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meissner K, Bingel U, Colloca L, Wager TD, Watson A, Flaten MA. The placebo effect: advances from different methodological approaches. J Neurosci. 2011;31(45):16117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner K, Fassler M, Rucker G, Kleijnen J, Hrobjartsson A, Schneider A, et al. Differential effectiveness of placebo treatments: a systematic review of migraine prophylaxis. JAMA Intern Med. 2013;173(21):1941–51.

    Article  PubMed  Google Scholar 

  • Mercado R, Constantoyannis C, Mandat T, Kumar A, Schulzer M, Stoessl AJ, et al. Expectation and the placebo effect in Parkinson’s disease patients with subthalamic nucleus deep brain stimulation. Mov Disord. 2006;21(9):1457–61.

    Article  PubMed  Google Scholar 

  • Moerman DE, Jonas WB. Deconstructing the placebo effect and finding the meaning response. Ann Intern Med. 2002;136(6):471–6.

    Article  PubMed  Google Scholar 

  • Mogil JS. Are we getting anywhere in human pain genetics? Pain. 2009;146(3):231–2.

    Article  PubMed  Google Scholar 

  • Mogil JS. Pain genetics: past, present and future. Trends Genet. 2012;28(6):258–66.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen CS, Stubhaug A, Price DD, Vassend O, Czajkowski N, Harris JR. Individual differences in pain sensitivity: genetic and environmental contributions. Pain. 2008;136(1–2):21–9.

    Article  PubMed  Google Scholar 

  • Norbury TA, MacGregor AJ, Urwin J, Spector TD, McMahon SB. Heritability of responses to painful stimuli in women: a classical twin study. Brain. 2007;130(Pt 11):3041–9.

    Article  PubMed  Google Scholar 

  • Oroszi G, Goldman D. Alcoholism: genes and mechanisms. Pharmacogenomics. 2004;5(8):1037–48.

    Article  CAS  PubMed  Google Scholar 

  • Pecina M, Zubieta JK. Over a decade of neuroimaging studies of placebo analgesia in humans: what is next? Mol Psychiatry. 2015a;20(4):415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecina M, Zubieta JK. Molecular mechanisms of placebo responses in humans. Mol Psychiatry. 2015b;20(4):416–23.

    Article  CAS  PubMed  Google Scholar 

  • Pecina M, Martinez-Jauand M, Hodgkinson C, Stohler CS, Goldman D, Zubieta JK. FAAH selectively influences placebo effects. Mol Psychiatry. 2014;19(3):385–91.

    Article  CAS  PubMed  Google Scholar 

  • Perry CJ, Blake P, Buettner C, Papavassiliou E, Schain AJ, Bhasin MK, et al. Upregulation of inflammatory gene transcripts in periosteum of chronic migraineurs: implications for extracranial origin of headache. Ann Neurol. 2016;79(6):1000–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen GL, Finnerup NB, Norskov KN, Grosen K, Pilegaard HK, Benedetti F, et al. Placebo manipulations reduce hyperalgesia in neuropathic pain. Pain. 2012;153(6):1292–300.

    Article  PubMed  Google Scholar 

  • Petersen GL, Finnerup NB, Grosen K, Pilegaard HK, Tracey I, Benedetti F, et al. Expectations and positive emotional feelings accompany reductions in ongoing and evoked neuropathic pain following placebo interventions. Pain. 2014;155(12):2687–98.

    Article  PubMed  Google Scholar 

  • Presciuttini S, Curcio M, Sciarrino R, Scatena F, Jensen MP, Santarcangelo EL. Polymorphism of opioid receptors mu1 in highly hypnotizable subjects. Int J Clin Exp Hypn. 2018;66(1):106–18.

    Article  PubMed  Google Scholar 

  • Schweinhardt P, Seminowicz DA, Jaeger E, Duncan GH, Bushnell MC. The anatomy of the mesolimbic reward system: a link between personality and the placebo analgesic response. J Neurosci. 2009;29(15):4882–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry. 2008;65(2):220–31.

    Article  PubMed  Google Scholar 

  • Skyt I, Moslemi K, Baastrup C, Grosen K, Benedetti F, Petersen GL, et al. Dopaminergic tone does not influence pain levels during placebo interventions in patients with chronic neuropathic pain. Pain. 2017;159(2):261–72.

    Article  CAS  Google Scholar 

  • Starkweather AR, Heineman A, Storey S, Rubia G, Lyon DE, Greenspan J, et al. Methods to measure peripheral and central sensitization using quantitative sensory testing: a focus on individuals with low back pain. Appl Nurs Res. 2016;29:237–41.

    Article  PubMed  Google Scholar 

  • Stein N, Sprenger C, Scholz J, Wiech K, Bingel U. White matter integrity of the descending pain modulatory system is associated with interindividual differences in placebo analgesia. Pain. 2012;153(11):2210–7.

    Article  PubMed  Google Scholar 

  • Stoeber M, Jullie D, Lobingier BT, Laeremans T, Steyaert J, Schiller PW, et al. A genetically encoded biosensor reveals location bias of opioid drug action. Neuron. 2018;98(5):963–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetreault P, Mansour A, Vachon-Presseau E, Schnitzer TJ, Apkarian AV, Baliki MN. Brain connectivity predicts placebo response across chronic pain clinical trials. PLoS Biol. 2016;14(10):e1002570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson R, Gupta S, Miller K, Mills S, Orr S. The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology. 2004;29(1):35–48.

    Article  CAS  PubMed  Google Scholar 

  • Thompson RR, George K, Walton JC, Orr SP, Benson J. Sex-specific influences of vasopressin on human social communication. Proc Natl Acad Sci U S A. 2006;103(20):7889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuttle AH, Tohyama S, Ramsay T, Kimmelman J, Schweinhardt P, Bennett GJ, et al. Increasing placebo responses over time in U.S. clinical trials of neuropathic pain. Pain. 2015;156(12):2616–26.

    Article  PubMed  Google Scholar 

  • Vachon-Presseau E, Berger SE, Abdullah TB, Huang L, Cecchi GA, Griffith JW, et al. Brain and psychological determinants of placebo pill response in chronic pain patients. Nat Commun. 2018;9(1):3397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vase L, Robinson ME, Verne GN, Price DD. The contributions of suggestion, desire, and expectation to placebo effects in irritable bowel syndrome patients. An empirical investigation. Pain. 2003;105(1–2):17–25.

    Article  PubMed  Google Scholar 

  • Vase L, Robinson ME, Verne GN, Price DD. Increased placebo analgesia over time in irritable bowel syndrome (IBS) patients is associated with desire and expectation but not endogenous opioid mechanisms. Pain. 2005;115(3):338–47.

    Article  PubMed  Google Scholar 

  • Vase L, Petersen GL, Riley JL 3rd, Price DD. Factors contributing to large analgesic effects in placebo mechanism studies conducted between 2002 and 2007. Pain. 2009;145(1–2):36–44.

    Article  PubMed  Google Scholar 

  • Vase L, Petersen GL, Lund K. Placebo effects in idiopathic and neuropathic pain conditions. Handb Exp Pharmacol. 2014;225:121–36.

    Article  PubMed  Google Scholar 

  • Vase L, Amanzio M, Price DD. Nocebo vs. placebo: the challenges of trial design in analgesia research. Clin Pharmacol Ther. 2015;97(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  • Vickers AJ, Cronin AM, Maschino AC, Lewith G, MacPherson H, Foster NE, et al. Acupuncture for chronic pain: individual patient data meta-analysis. Arch Intern Med. 2012;172(19):1444–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waber RL, Shiv B, Carmon Z, Ariely D. Commercial features of placebo and therapeutic efficacy. JAMA. 2008;299(9):1016–7.

    Article  CAS  PubMed  Google Scholar 

  • Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004;303(5661):1162–7.

    Article  CAS  PubMed  Google Scholar 

  • Wager TD, Scott DJ, Zubieta JK. Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci U S A. 2007;104(26):11056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RS, Hall KT, Giulianini F, Passow D, Kaptchuk TJ, Loscalzo J. Network analysis of the genomic basis of the placebo effect. JCI Insight. 2017;2(11):93911.

    Article  PubMed  Google Scholar 

  • Wei SY, Chen LF, Lin MW, Li WC, Low I, Yang CJ, et al. The OPRM1 A118G polymorphism modulates the descending pain modulatory system for individual pain experience in young women with primary dysmenorrhea. Sci Rep. 2017;7:39906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrobel N, Wiech K, Forkmann K, Ritter C, Bingel U. Haloperidol blocks dorsal striatum activity but not analgesia in a placebo paradigm. Cortex. 2014;57:60–73.

    Article  PubMed  Google Scholar 

  • Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci. 2004;7(10):1048–54.

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Gollub RL, Vangel M, Kaptchuk T, Smoller JW, Kong J. Placebo analgesia and reward processing: integrating genetics, personality, and intrinsic brain activity. Hum Brain Mapp. 2014;35(9):4583–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang D, Johnson AD, Papp AC, Sadee W. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem. 2005;280(38):32618–24.

    Article  CAS  PubMed  Google Scholar 

  • Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001;293(5528):311–5.

    Article  CAS  PubMed  Google Scholar 

  • Zubieta JK, Smith YR, Bueller JA, Xu Y, Kilbourn MR, Jewett DM, et al. Mu-opioid receptor-mediated antinociceptive responses differ in men and women. J Neurosci. 2002;22(12):5100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, et al. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science. 2003;299(5610):1240–3.

    Article  CAS  PubMed  Google Scholar 

  • Zubieta JK, Bueller JA, Jackson LR, Scott DJ, Xu Y, Koeppe RA, et al. Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J Neurosci. 2005;25(34):7754–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zunhammer M, Bingel U, Wager TD, Placebo Imaging Consortium. Placebo effects on the neurologic pain signature: a meta-analysis of individual participant functional magnetic resonance imaging data. JAMA Neurol. 2018;75(11):1321–30.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research is supported by NIDCR (R01 DE025946).

Competing Interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luana Colloca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colloca, L., Raghuraman, N. (2020). Placebo Hypoalgesic Effects and Genomics. In: Dorsey, S., Starkweather, A. (eds) Genomics of Pain and Co-Morbid Symptoms. Springer, Cham. https://doi.org/10.1007/978-3-030-21657-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21657-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21656-6

  • Online ISBN: 978-3-030-21657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics