Skip to main content

Spinal Cord Injury-Related Pain and Genomics

  • Chapter
  • First Online:
Genomics of Pain and Co-Morbid Symptoms

Abstract

Spinal cord injury is a heterogenous condition characterized by destruction of cells and tissues of the central nervous system and there is a high propensity for the injury to result in chronic pain. Prior research on the mechanisms of pain following spinal cord injury has been difficult to replicate due to differences in the categorization of pain type(s) and inconsistent use of measures to phenotype pain across studies. Plausible mechanisms underlying the development and maintenance of spinal cord injury-related pain overlap with the pathophysiology of secondary injury as well as other chronic pain conditions. Current research in the field to identify biological markers, including genomics, is discussed with implications for future research in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bethea JR, Castro M, Keane RW, Lee TT, Dietrich WD, Yezierski RP. Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci. 1998;18:3251–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldt I, Eriks-Hoogland I, Brinkhof MWG, de Bie R, Joggi D, von Elm E. Non-pharmacological interventions for chronic pain in people with spinal cord injury. Cochrane Database Syst Rev. 2014;11:CD009177. https://doi.org/10.1002/14651858.CD009177.pub2.

    Article  Google Scholar 

  • Brown SJ, Harrington GMB, Hulme CH, et al. A preliminary cohort study assessing routine blood analyte levels and neurological outcome after spinal cord injury. J Neurotrauma. 2019;36:1–15.

    Article  Google Scholar 

  • Bryce TN, Biering-Sorensen F, Finnerup NB, Cardenas DD, Defrin R, Lundeberg T, Norrbrink C, Richards JS, Siddall P, Stripling T, Treede RD, Waxman SG, Widerstrom-Noga E, Yezierski RP, Dijkers M. International spinal cord injury pain classification: part I. Background and description. Spinal Cord. 2012;50:413–7.

    Article  CAS  PubMed  Google Scholar 

  • Burke D, Lennon O, Fullen BM. Quality of life after spinal cord injury: the impact of pain. Eur J Pain. 2018;22:1662–72.

    Article  CAS  PubMed  Google Scholar 

  • Celik EC, Erhan B, Lakse E. The clinical characteristics of neuropathic pain in patients with spinal cord injury. Spinal Cord. 2017;50:585–9.

    Article  Google Scholar 

  • Crown ED, Ye Z, Johnson KM, Xu G-Y, McAdoo DJ, Hulsebosch CE. Increases in the activated forms of ERK 1/2, p38 MAPK, and CREB are correlated with the expression of at-level mechanical allodynia following spinal cord injury. Exp Neurol. 2006;199:397–407.

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Almeida Y, Felix ER, Martinez-Arizala A, Widerström-Noga EG. Decreased spinothalamic and dorsal column–medial lemniscus-mediated function is associated with neuropathic pain after spinal cord injury. J Neurotrauma. 2012;29:2706–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Defrin R, Ohry A, Blumen N, Urca G. Characterization of chronic pain and somatosensory function in spinal cord injury subjects. Pain. 2001;89:253–63.

    Article  CAS  PubMed  Google Scholar 

  • Dijkers M, Bryce T, Zanca J. Prevalence of chronic pain after traumatic spinal cord injury: a systematic review. J Rehabil Res Dev. 2009;46:13–29.

    Article  PubMed  Google Scholar 

  • Felix ER, Widerstrom-Noga EG. Reliability and validity of quantitative sensory testing in persons with spinal cord injury and neuropathic pain. J Rehabil Res Dev. 2009;46:69–83.

    Article  PubMed  Google Scholar 

  • Finnerup NB. Neuropathic pain and spasticity: intricate consequences of spinal cord injury. Spinal Cord. 2017;55:1046–50.

    Article  CAS  PubMed  Google Scholar 

  • Finnerup NB, Johannesen IL, Fuglsang-Frederiksen A, Bach FW, Jensen TS. Sensory function in spinal cord injury patients with and without central pain. Brain. 2003;126:57–70.

    Article  CAS  PubMed  Google Scholar 

  • Finnerup NB, Norrbrink C, Trok K, Piehl F, Johannesen IL, Sorensen JC, Jensen TS, Werhagen L. Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J Pain. 2014;15:40–8.

    Article  PubMed  Google Scholar 

  • Gibbs K, Beaufort A, Stein A, Leung TM, Sison C, Bloom O. Assessment of pain symptoms and quality of life using the International Spinal Cord Injury Data Sets in persons with chronic spinal cord injury. Spinal Cord Ser Cases. 2019;5:32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gustin SM, Wrigley PJ, Siddall PJ, Henderson LA. Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cereb Cortex. 2010;20:1409–19.

    Article  CAS  PubMed  Google Scholar 

  • Gwak YS, Hulsebosch CE. GABA and central neuropathic pain following spinal cord injury. Neuropharmacology. 2011;60:799–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwak YS, Unabia GC, Hulsebosch CE. Activation of p-38α MAPK contributes to neuronal hyperexcitability in caudal regions remote from spinal cord injury. Exp Neurol. 2009;220:154–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci. 2003;23:8881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hari AR, Wydenkeller S, Dokladal P, Halder P. Enhanced recovery of human spinothalamic function is associated with central neuropathic pain after SCI. Exp Neurol. 2009;216:428–30.

    Article  PubMed  Google Scholar 

  • Hatch MN, Cushing TR, Carlson GD, Chang EY. Neuropathic pain and SCI: identification and treatment strategies in the 21st century. J Neurol Sci. 2018;384:75–83.

    Article  PubMed  Google Scholar 

  • He X, Fan L, Wu Z, He J, Cheng B. Gene expression profiles reveal key pathways and genes associated with neuropathic pain in patients with spinal cord injury. Mol Med Rep. 2017;15(4):2120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuya Y, Umezawa H, Hatano M. Stress-activated protein kinases in spinal cord injury: focus on roles of p38. Int J Mol Sci. 2018;19(3):E867.

    Article  PubMed  CAS  Google Scholar 

  • Kwon BK, Bloom O, Wanner I, Curt A, Schwab JM, Fawcett J, Wang KK. Neurochemical biomarkers in spinal cord injury. Spinal Cord. 2019;7(10):819–31. https://doi.org/10.1038/s41393-019-0319-8.

    Article  Google Scholar 

  • Liu DX, Valadez V, Sorkin LS, McAdoo DJ. Norepinephrine and serotonin release upon impact injury to rat spinal cord. J Neurotrauma. 1990;7:219–27.

    Article  CAS  PubMed  Google Scholar 

  • Mahnig S, Landmann G, Stockinger L, Opsommer E. Pain assessment according to the International Spinal Cord Injury Pain classification in patients with spinal cord injury referred to a multidisciplinary pain center. Spinal Cord. 2016;54:809–15.

    Article  CAS  PubMed  Google Scholar 

  • Martini AC, Forner S, Koepp J, Rae GA. Inhibition of spinal c-Jun-NH2-terminal kinase (JNK) improves locomotor activity of spinal cord injured rats. Neurosci Lett. 2016;621:54–61.

    Article  CAS  PubMed  Google Scholar 

  • Mordillo-Mateos L, Sanchez-Ramos A, Coperchini F, Bustos-Guadamillas I, Alonso-Bonilla C, Vargas-Baquero E, Rodriguez-Carrion I, Rotondi M, Oliviero A. Development of chronic pain in males with traumatic spinal cord injury: role of circulating levels of the chemokines CCL2 and CXCL10 in subacute stage. Spinal Cord. 2019;57(11):953–9. https://doi.org/10.1038/s41393-019-0311-3.

    Article  PubMed  Google Scholar 

  • Moshourab RA, Schafer M, Al-Chaer ED. Chronic pain in neurotrauma: implications on spinal cord and traumatic brain injury, chapter 11. In: Kobeissy FH, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Boca Raton, FL: CRC Press/Taylor & Francis; 2015.

    Google Scholar 

  • Rodriguez VS, Aguilar IC, Villa LC, Saenz de Tejada SF. TRPA1 polymorphisms in chronic and complete spinal cord injury patients with neuropathic pain: a pilot study. Spinal Cord Ser Cases. 2017;3:17089.

    Article  Google Scholar 

  • Siddall PJ, Xu CL, Floyd N, Keay KA. C-fos expression in the spinal cord of rats exhibiting allodynia following contusive spinal cord injury. Brain Res. 1999;851:281–6.

    Article  CAS  PubMed  Google Scholar 

  • Siddall PJ, Yezierski RP, Loeser JD. Spinal cord injury pain: assessment, mechanisms, management. In: Yezierski RP, Burchiel KJ, editors. Progress in pain research and management, vol. 23. Seattle, WA: IASP Press; 2002. p. 9–24.

    Google Scholar 

  • Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ. A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain. 2003;103:249–57.

    Article  PubMed  Google Scholar 

  • Tsai MC, Wei CP, Lee DY, Tseng YT, Tsai MD, Shih YL, Lee YH, Chang SF, Leu SJ. Inflammatory mediators of cerebrospinal fluid from patients with spinal cord injury. Surg Neurol. 2008;70:S19–24.

    Article  Google Scholar 

  • van Gorp S, Kessels AG, Joosten EA, van Kleef M, Patijn J. Pain prevalence and its determinants after spinal cord injury: a systematic review. Eur J Pain. 2014;19:5–24.

    Article  PubMed  Google Scholar 

  • Widerstrom-Noga E. Neuropathic pain and spinal cord injury: phenotypes and pharmacological management. Drugs. 2017;77:967–84.

    Article  PubMed  Google Scholar 

  • Widerström-Noga E, Pattany PM, Cruz-Almeida Y, Felix ER, Perez S, Cardenas DD, Martinez-Arizala A. Metabolite concentrations in the anterior cingulate cortex predict high neuropathic pain impact after spinal cord injury. Pain. 2013;154:204–12.

    Article  PubMed  CAS  Google Scholar 

  • Widerström-Noga E, Biering-Sørensen F, Bryce TN, Cardenas DD, Finnerup NB, Jensen MP, Richards JS, Siddall PJ. The international spinal cord injury pain basic data set (version 2.0). Spinal Cord. 2014;52:282–6.

    Article  PubMed  Google Scholar 

  • Widerstrom-Noga E, Cruz-Almeida Y, Felix ER, Pattany PM. Somatosensory phenotype is associated with thalamic metabolites and pain intensity after spinal cord injury. Pain. 2015;156(1):166–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Widerstrom-Noga E, Felix ER, Adcock JP, Escalona M, Tibbett J. Multidimensional neuropathic pain phenotypes after spinal cord injury. J Neurotrauma. 2016;11:482–92.

    Article  Google Scholar 

  • Yezierski RP. Spinal cord injury: a model of central neuropathic pain. Neurosignals. 2005;14:182–93.

    Article  CAS  PubMed  Google Scholar 

  • Yezierski RP, Yu CG, Mantyh PW, Vierck CJ, Lappi DA. Spinal neurons involved in the generation of at-level pain following spinal injury in the rat. Neurosci Lett. 2004;361:232–6.

    Article  CAS  PubMed  Google Scholar 

  • Yoon EJ, Kim YK, Shin HI, Lee Y, Kim SE. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res. 2013;1540:64–73.

    Article  CAS  PubMed  Google Scholar 

  • Zeilig G, Enosh S, Rubin-Asher D, Lehr B, Defrin R. The nature and course of sensory changes following spinal cord injury: predictive properties and implications on the mechanism of central pain. Brain. 2012;135:418–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela R. Starkweather .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Starkweather, A.R., Dorsey, S.G. (2020). Spinal Cord Injury-Related Pain and Genomics. In: Dorsey, S., Starkweather, A. (eds) Genomics of Pain and Co-Morbid Symptoms. Springer, Cham. https://doi.org/10.1007/978-3-030-21657-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21657-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21656-6

  • Online ISBN: 978-3-030-21657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics