Skip to main content

Carbon Nanomaterials and Two-Dimensional Transition Metal Dichalcogenides (2D TMDCs)

  • Chapter
  • First Online:
Nanoelectronic Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 116))

Abstract

Carbon nanostructures are a leading material in the nanotechnology field. The discovery and research of carbon materials has considerably contributed to the advancement of modern day science and technology. After the discovery of fullerene and single walled carbon nanotube (CNT), which are zero-dimensional and one-dimensional carbon nanomaterials respectively, the researchers have tried to isolate 2D graphitic material or to make 1D nano-ribbons from 2D crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K., Geim, A.K., Morozov, S., Jiang, D., Grigorieva, M.K.I., Dubonos, S., et al.: Two dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    CAS  Google Scholar 

  2. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    CAS  Google Scholar 

  3. Li, D., Kaner, R.B.: Materials science. Graphene-based materials. Science 320, 1170–1171 (2008)

    CAS  Google Scholar 

  4. Li, D., Kaner, R.B.: Graphene-based materials. Nat. Nanotechnol. 3, 101 (2008)

    CAS  Google Scholar 

  5. Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622 (1947)

    CAS  Google Scholar 

  6. Zou, J., Liu, J., Karakoti, A.S., Kumar, A., Joung, D., Li, Q., et al.: Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4, 7293–7302 (2010)

    CAS  Google Scholar 

  7. Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008)

    CAS  Google Scholar 

  8. Fuhrer, M.S., Lau, C.N., MacDonald, A.H.: Graphene: materially better carbon. MRS Bull. 35, 289–295 (2010)

    CAS  Google Scholar 

  9. Durkop, T., Getty, S., Cobas, E., Fuhrer, M.: Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004)

    Google Scholar 

  10. Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    CAS  Google Scholar 

  11. Geim, A., Grigorieva, I.: Van der Waals heterostructures. Nature 499, 419–425 (2013)

    CAS  Google Scholar 

  12. Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., Zamora, F.: 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011)

    CAS  Google Scholar 

  13. Xu, M., Liang, T., Shi, M., Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013)

    CAS  Google Scholar 

  14. Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., et al.: Tunable bandgap in silicene and germanene. Nano Lett. 12, 113–118 (2011)

    Google Scholar 

  15. Tabert, C.J., Nicol, E.J.: AC/DC spin and valley Hall effects in silicene and germanene. Phys. Rev. B 87, 235426 (2013)

    Google Scholar 

  16. Wei, W., Dai, Y., Huang, B., Jacob, T.: Many-body effects in silicene, silicane, germanene and germanane. Phys. Chem. Chem. Phys. 15, 8789–8794 (2013)

    CAS  Google Scholar 

  17. Cai, Y., Chuu, C.-P., Wei, C., Chou, M.: Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys. Rev. B 88, 245408 (2013)

    Google Scholar 

  18. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011)

    CAS  Google Scholar 

  19. Yang, N., Zhai, J., Wang, D., Chen, Y., Jiang, L.: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887–894 (2010)

    CAS  Google Scholar 

  20. Ghosh, S., Sarker, B.K., Chunder, A., Zhai, L., Khondaker, S.I.: Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett. 96, 163109 (2010)

    Google Scholar 

  21. Chunder, A., Pal, T., Khondaker, S.I., Zhai, L.: Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties. J. Phys. Chem. C 114, 15129–15135 (2010)

    CAS  Google Scholar 

  22. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    CAS  Google Scholar 

  23. Wilson, J., Di Salvo, F., Mahajan, S.: Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 32, 882 (1974)

    CAS  Google Scholar 

  24. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Google Scholar 

  25. Canadell, E., LeBeuze, A., El Khalifa, M.A., Chevrel, R., Whangbo, M.H.: Origin of metal clustering in transition-metal chalcogenide layers MX2 (M = Nb, Ta, Mo, Re; X = S, Se). J. Am. Chem. Soc. 111, 3778–3782 (1989)

    CAS  Google Scholar 

  26. Jin, S., Lukowski, M.A., Daniel, A.S., English, C.R., Meng, F., Forticaux, A., et al.: Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. (2014)

    Google Scholar 

  27. Andriotis, A.N., Menon, M.: Tunable magnetic properties of transition metal doped MoS2. Phys. Rev. B 90, 125304 (2014)

    Google Scholar 

  28. He, J., Hummer, K., Franchini, C.: Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 89, 075409 (2014)

    Google Scholar 

  29. Huang, Y., Peng, C., Chen, R., Huang, Y., Ho, C.: Transport properties in semiconducting NbS2 nanoflakes. Appl. Phys. Lett. 105, 093106 (2014)

    Google Scholar 

  30. Moore, D.B., Beekman, M., Disch, S., Zschack, P., Hausler, I., Neumann, W., et al.: Synthesis, structure, and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chem. Mater. 25, 2404–2409 (2013)

    Google Scholar 

  31. Jeong, S., Yoo, D., Jang, J.-t., Kim, M., Cheon, J.: Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J. Am. Chem. Soc. 134, 18233–18236 (2012)

    CAS  Google Scholar 

  32. Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M., Chhowalla, M.: Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6, 7311–7317 (2012)

    CAS  Google Scholar 

  33. Li, H., Lu, G., Wang, Y., Yin, Z., Cong, C., He, Q., et al.: Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 9, 1974–1981 (2013)

    CAS  Google Scholar 

  34. Li, H., Lu, G., Yin, Z., He, Q., Li, H., Zhang, Q., et al.: Optical identification of single- and few-layer MoS2 sheets. Small 8, 682–686 (2012)

    CAS  Google Scholar 

  35. Tongay, S., Zhou, J., Ataca, C., Lo, K., Matthews, T.S., Li, J., et al.: Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012)

    CAS  Google Scholar 

  36. Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., et al.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)

    CAS  Google Scholar 

  37. Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutierrez, H.R., et al.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013)

    CAS  Google Scholar 

  38. Wilson, J.A., Yoffe, A.D.: Transition metal dichalcogenides discussion and interpretation of observed optical, electrical, and structural properties. Adv. Phys. 18, 193–335 (1969)

    CAS  Google Scholar 

  39. Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

    CAS  Google Scholar 

  40. Wang, T., Liu, L., Zhu, Z., Papakonstantinou, P., Hu, J., Liu, H., et al.: Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 6, 625–633 (2013)

    CAS  Google Scholar 

  41. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., et al.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)

    CAS  Google Scholar 

  42. Taha-Tijerina, J., Narayanan, T.N., Gao, G., Rohde, M., Tsentalovich, D.A., Pasquali, M., et al.: Electrically insulating thermal nanooils using 2D fillers. ACS Nano 6, 1214–1220 (2012)

    CAS  Google Scholar 

  43. Lin, S.S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951–3955 (2012)

    CAS  Google Scholar 

  44. Yang, S., Gong, Y., Liu, Z., Zhan, L., Hashim, D.P., Ma, L., et al.: Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13, 1596–1601 (2013)

    CAS  Google Scholar 

  45. Kong, D., Dang, W., Cha, J.J., Li, H., Meister, S., Peng, H., et al.: Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 10, 2245–2250 (2010)

    CAS  Google Scholar 

  46. Hu, L., Ma, R., Ozawa, T.C., Sasaki, T.: Exfoliation of layered europium hydroxide into unilamellar nanosheets. Chem. Asian J. 5, 248–251 (2010)

    CAS  Google Scholar 

  47. Ozawa, T.C., Fukuda, K., Akatsuka, K., Ebina, Y., Sasaki, T.: Preparation and characterization of the Eu3+ doped perovskite nanosheet phosphor: La0.9Eu0.05Nb2O7. Chem. Mater. 19, 6575–6580 (2007)

    Google Scholar 

  48. Ozawa, T.C., Fukuda, K., Akatsuka, K., Ebina, Y., Sasaki, T., Kurashima, K., et al.: (K1.5Eu0.5)Ta3O10: a far-red luminescent nanosheet phosphor with the double perovskite structure. J. Phys. Chem. C 112, 17115–17120 (2008)

    Google Scholar 

  49. Ida, S., Ogata, C., Eguchi, M., Youngblood, W.J., Mallouk, T.E., Matsumoto, Y.: Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: lanthanide ion). J. Am. Chem. Soc. 130, 7052–7059 (2008)

    CAS  Google Scholar 

  50. Ebina, Y., Sasaki, T., Harada, M., Watanabe, M.: Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts. Chem. Mater. 14, 4390–4395 (2002)

    CAS  Google Scholar 

  51. Osada, M., Akatsuka, K., Ebina, Y., Funakubo, H., Ono, K., Takada, K., et al.: Robust high-j response in molecularly thin perovskite nanosheets. ACS Nano 4, 5225–5232 (2010)

    CAS  Google Scholar 

  52. Ma, R., Liu, Z., Takada, K., Iyi, N., Bando, Y., Sasaki, T.: Synthesis and exfoliation of Co2+–Fe3+ layered double hydroxides: an innovative topochemical approach. J. Am. Chem. Soc. 129, 5257–5263 (2007)

    CAS  Google Scholar 

  53. Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., et al.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)

    Google Scholar 

  54. Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., et al.: Buckled silicene formation on Ir(111). Nano Lett. 13, 685–690 (2013)

    CAS  Google Scholar 

  55. Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., Yamada-Takamura, Y.: Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012)

    Google Scholar 

  56. Jung, H., Park, J., Oh, I.-K., Choi, T., Lee, S., Hong, J., et al.: Fabrication of transferable Al2O3 nanosheet by atomic layer deposition for graphene FET. ACS Appl. Mater. Interfaces 6, 2764–2769 (2014)

    CAS  Google Scholar 

  57. Ruggiero, C.D., Badal, M., Choi, T., Gohlke, D., Stroud, D., Gupta, J.A.: Emergence of surface states in nanoscale Cu2N islands. Phys. Rev. B 83, 245430 (2011)

    Google Scholar 

  58. Sterrer, M., Risse, T., Pozzoni, U.M., Giordano, L., Heyde, M., Rust, H.-P., et al.: Control of the charge state of metal atoms on thin MgO films. Phys. Rev. Lett. 98, 096107 (2007)

    Google Scholar 

  59. Hao, B., Yan, Y., Wang, X., Chen, G.: Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage. ACS Appl. Mater. Interfaces 5, 6285–6291 (2013)

    CAS  Google Scholar 

  60. Oughaddou, H., Aufray, B., Biberian, J.P., Hoarau, J.Y.: Growth mode and dissolution kinetics of germanium thin films on Ag (001) surface: an AES–LEED investigation. Surf. Sci. 429, 320–326 (1999)

    CAS  Google Scholar 

  61. Oughaddou, H., Gay, J.M., Aufray, B., Lapena, L., Lay, G.L., Bunk, O., et al.: Ge tetramer structure of the p(2√2 × 4√2)R45° surface reconstruction of Ge/Ag(001): a surface X-ray diffraction and STM study. Phys. Rev. B 61, 5692 (2000)

    CAS  Google Scholar 

  62. Golias, E., Xenogiannopoulou, E., Tsoutsou, D., Tsipas, P., Giamini, S.A., Dimoulas, A.: Surface electronic bands of submonolayer Ge on Ag(111). Phys. Rev. B 88, 075403 (2013)

    Google Scholar 

  63. Oughaddou, H., Mayne, A., Aufray, B., Biberian, J.P., Lay, G.L., Ealet, B., et al.: Germanium adsorption on Ag(111): an AES-LEED and STM study. J. Nanosci. Nanotechnol. 7, 3189–3192 (2007)

    CAS  Google Scholar 

  64. Cullis, A.G., Booker, G.R.: The epitaxial growth of silicon and germanium films on (111) silicon surfaces using UHV sublimation and evaporation techniques. J. Cryst. Growth 9, 132–138 (1971)

    CAS  Google Scholar 

  65. Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., Coleman, J.N.: Liquid exfoliation of layered materials. Science 340, 1226419 (2013)

    Google Scholar 

  66. Ozawa, T.C., Fukuda, K., Akatsuka, K., Ebina, Y., Sasaki, T.: Preparation and characterization of the Eu3+ doped perovskite nanosheet phosphor: La0.90Eu0.05Nb2O7. Chem. Mater. 19, 6575–6580 (2007)

    Google Scholar 

  67. Cunningham, G., Lotya, M., Cucinotta, C.S., Sanvito, S., Bergin, S.D., Menzel, R., et al.: Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6, 3468–3480 (2012)

    CAS  Google Scholar 

  68. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., et al.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)

    CAS  Google Scholar 

  69. Diaz, E., Ordonez, S., Vega, A.: Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. J. Colloid Interface Sci. 305, 7–16 (2007)

    CAS  Google Scholar 

  70. Ataca, C., Sahin, H., Ciraci, S.: Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012)

    CAS  Google Scholar 

  71. Fang, C., Van Bruggen, C., De Groot, R., Wiegers, G., Haas, C.: The electronic structure of the metastable layer compound. J. Phys.: Condens. Matter 9, 10173 (1997)

    CAS  Google Scholar 

  72. Zhang, J.H., Birdwhistell, T.L., O’Connor, C.J.: Magnetic and electrical properties of a new chromium telluride phase: CrTe2. Solid State Commun. 74, 443–446 (1990)

    CAS  Google Scholar 

  73. Koneshova, T., Babitsyna, A., Emel’yanova, T.: Cu–Te and Cr–Te Phase Diagrams (2001)

    Google Scholar 

  74. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    CAS  Google Scholar 

  75. Balendhran, S., et al.: Atomically thin layers of MoS2 via a two-step thermal evaporation-exfoliation method. Nanoscale 4(2), 461–466 (2012)

    CAS  Google Scholar 

  76. Nicolosi, V., et al.: Liquid exfoliation of layered materials. Science 340, 6139 (2013)

    Google Scholar 

  77. Wang, J., et al.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719–1722 (2003)

    CAS  Google Scholar 

  78. Zixu, Z., et al.: Graphene geometric diodes for terahertz rectennas. J. Phys. D Appl. Phys. 46(18), 185101 (2013)

    Google Scholar 

  79. O’Hare, A., Kusmartsev, F.V., Kugel, K.I.: A stable, “flat” form of two-dimensional crystals: could graphene, silicene, germanene be minigap semiconductors? Nano Lett. 12(2), 1045–1052 (2012)

    Google Scholar 

  80. Kuc, A., Zibouche, N., Heine, T.: Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83(24), 245213 (2011)

    Google Scholar 

  81. Xu, M., et al.: Unique synthesis of graphene-based materials for clean energy and biological sensing applications. Chin. Sci. Bull. 57(23), 3000–3009 (2012)

    CAS  Google Scholar 

  82. Zhu, W., et al.: Graphene radio frequency devices on flexible substrate. Appl. Phys. Lett. 102(23), 233102 (2013)

    Google Scholar 

  83. Bae, S., et al.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)

    CAS  Google Scholar 

  84. Klein, C.A., Straub, W.D.: Carrier densities and mobilities in pyrolytic graphite. Phys. Rev. 123(5), 1581–1583 (1961)

    CAS  Google Scholar 

  85. Novoselov, K.S., et al.: Room-temperature quantum hall effect in graphene. Science 315(5817), 1379 (2007)

    CAS  Google Scholar 

  86. Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    CAS  Google Scholar 

  87. Stankovich, S., et al.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    CAS  Google Scholar 

  88. Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    CAS  Google Scholar 

  89. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005)

    CAS  Google Scholar 

  90. Mattheiss, L.F.: Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973)

    CAS  Google Scholar 

  91. Bernardi, M., Palummo, M., Grossman, J.C.: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013)

    CAS  Google Scholar 

  92. Lee, H.S., Min, S.-W., Chang, Y.-G., Park, M.K., Nam, T., Kim, H., Kim, J.H., Ryu, S., Im, S.: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012)

    CAS  Google Scholar 

  93. Withers, F., Del Pozo-Zamudio, O., Mishchenko, A., Rooney, A.P., Gholinia, A., Watanabe, K., Taniguchi, T., Haigh, S.J., Geim, A.K., Tartakovskii, A.I., Novoselov, K.S.: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015)

    CAS  Google Scholar 

  94. Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)

    Google Scholar 

  95. Chia, X., Eng, A.Y.S., Ambrosi, A., Tan, S.M., Pumera, M.: Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. (Washington, DC, US) 115, 11941–11966 (2015)

    Google Scholar 

  96. Windom, B.C., Sawyer, W.G., Hahn, D.W.: A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems. Tribol. Lett. 42, 301–310 (2011)

    CAS  Google Scholar 

  97. Fleischauer, P.D., Lince, J.R., Bertrand, P.A., Bauer, R.: Electronic structure and lubrication properties of MoS2: a qualitative molecular orbital approach. Langmuir 5, 1009–1015 (1989)

    CAS  Google Scholar 

  98. Salomon, G., De Gee, A.W.J., Zaat, J.H.: Mechano-chemical factors in MoS2-film lubrication. Wear 7, 87–101 (1964)

    Google Scholar 

  99. Azhagurajan, M., Kajita, T., Itoh, T., Kim, Y.-G., Itaya, K.: In situ visualization of lithium ion intercalation into MoS2 single crystals using differential optical microscopy with atomic layer resolution. J. Am. Chem. Soc. 138, 3355–3361 (2016)

    CAS  Google Scholar 

  100. Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016)

    CAS  Google Scholar 

  101. Ajayan, P., Kim, P., Banerjee, K.: Two-dimensional van der Waals materials. Phys. Today 69, 38–44 (2016)

    CAS  Google Scholar 

  102. Oughaddou, H., et al.: Prog. Surf. Sci. 90, 46 (2015)

    CAS  Google Scholar 

  103. Liu, H., et al.: ACS Nano 8, 4033 (2014)

    CAS  Google Scholar 

  104. Abergel, D.S.L., et al.: Properties of graphene: a theoretical perspective. Adv. Phys. 59(4), 261–482 (2010)

    CAS  Google Scholar 

  105. Alferov, Z.I.: Rev. Mod. Phys. 73(3), 767 (2001)

    CAS  Google Scholar 

  106. Kroemer, H.: Rev. Mod. Phys. 73(3), 783 (2001)

    CAS  Google Scholar 

  107. Isamu, A., et al.: J. Lumin. 4849(Part 2), 666 (1991)

    Google Scholar 

  108. Amano, H., et al.: Jpn. J. Appl. Phys. 28(12A), L2112 (1989)

    CAS  Google Scholar 

  109. Duan, X., et al.: Chem. Soc. Rev. 44, 8859 (2015)

    CAS  Google Scholar 

  110. Jariwala, D., et al.: ACS Nano 8, 1102 (2014)

    CAS  Google Scholar 

  111. Mahatha, S., et al.: J. Phys.: Condens. Matter 24, 475504 (2012)

    CAS  Google Scholar 

  112. Hwang, W.S., et al.: Appl. Phys. Lett. 101, 013107 (2012)

    Google Scholar 

  113. Vogt, P., et al.: Phys. Rev. Lett. 108, 155501 (2012)

    Google Scholar 

  114. Pakdel, A., et al.: Mater. Today 15, 256 (2012)

    CAS  Google Scholar 

  115. Song, L., et al.: Phys. Rev. B 86, 075429 (2012)

    Google Scholar 

  116. Ci, L., et al.: Nat. Mater. 9, 430 (2010)

    CAS  Google Scholar 

  117. Liu, Z., et al.: Nano Lett. 11, 2032 (2011)

    CAS  Google Scholar 

  118. Zhang, H.: ACS Nano 9, 9451 (2015)

    CAS  Google Scholar 

  119. Das, S., et al.: Crit. Rev. Solid State Mater. Sci. 39, 231 (2014)

    CAS  Google Scholar 

  120. Wang, X.-R., et al.: Chin. Phys. B 22, 098505 (2013)

    Google Scholar 

  121. Das, S., et al.: Annu. Rev. Mater. Res. 45, 1 (2015)

    CAS  Google Scholar 

  122. Cheng, R., et al.: Nat. Commun. 5, 5143 (2014)

    CAS  Google Scholar 

  123. Akinwande, D., et al.: Nat. Commun. 5, 5678 (2014)

    CAS  Google Scholar 

  124. Bao, W., et al.: Appl. Phys. Lett. 102, 042104 (2013)

    Google Scholar 

  125. Frey, G., et al.: Phys. Rev. B 57, 6666 (1998)

    CAS  Google Scholar 

  126. Islam, M.R., et al.: Nanoscale 6, 10033 (2014)

    CAS  Google Scholar 

  127. Choudhary, N., et al.: J. Phys.: Condens. Matter 28, 364002 (2016)

    Google Scholar 

  128. Fuhrer, M.S., Hone, J.: Nat. Nanotechnol. 8, 146 (2013)

    CAS  Google Scholar 

  129. Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A road map for graphene. Nature 490, 192–200 (2012)

    CAS  Google Scholar 

  130. Tributsch, H., Bennett, J.C.: Electrochemistry and photochemistry of MoS2 layer crystals. I. J. Electroanal. Chem. 81, 97–111 (1977)

    Google Scholar 

  131. Fivaz, R., Mooser, E.: Mobility of charge carriers in semiconducting layerstructures. Phys. Rev. 163, 743–755 (1967)

    CAS  Google Scholar 

  132. Geim, A.K.: Nobel lecture: random walk to graphene. Rev. Mod. Phys. 83, 851–862 (2011)

    CAS  Google Scholar 

  133. Osada, M., Sasaki, T.: Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012)

    CAS  Google Scholar 

  134. Miró, P., Audiffred, M., Heine, T.: An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014)

    Google Scholar 

  135. Wang, F., Wang, Z., Wang, Q., Wang, F., Yin, L., Xu, K., Huang, Y., He, J.: Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology 26, 292001 (2015)

    Google Scholar 

  136. Bromley, R.A., Murray, R.B., Yoffe, A.D.: The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J. Phys. C: Solid State Phys. 5, 759–778 (1972)

    CAS  Google Scholar 

  137. Lin, Y.-C., Dumcenco, D.O., Huang, Y.-S., Suenaga, K.: Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014)

    CAS  Google Scholar 

  138. Kappera, R., Voiry, D., Yalcin, S.E., Branch, B., Gupta, G., Mohite, A.D., Chhowalla, M.: Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014)

    CAS  Google Scholar 

  139. Slonczewski, J.C., Weiss, P.R.: Band structure of graphite. Phys. Rev. 109, 272–279 (1958)

    CAS  Google Scholar 

  140. Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., van der Zant, H.S.J.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014)

    Google Scholar 

  141. Novoselov, K.S.: Nobel lecture: graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011)

    CAS  Google Scholar 

  142. Guo, Z., Zhang, H., Lu, S., Wang, Z., Tang, S., Shao, J., Sun, Z., Xie, H., Wang, H., Yu, X.-F., Chu, P.K.: From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015)

    CAS  Google Scholar 

  143. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    CAS  Google Scholar 

  144. Zhu, X., Monahan, N.R., Gong, Z., Zhu, H., Williams, K.W., Nelson, C.A.: Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 137, 8313–8320 (2015)

    CAS  Google Scholar 

  145. Kim, K.K., et al.: Nano Lett. 12(1), 161 (2011)

    Google Scholar 

  146. Shi, Y., et al.: Nano Lett. 10(10), 4134 (2010)

    CAS  Google Scholar 

  147. C.-H. Chen, et al.: 2D Mater. 1(3), 034001 (2014)

    Google Scholar 

  148. Liu, K.-K., et al.: Nano Lett. 12(3), 1538 (2012)

    CAS  Google Scholar 

  149. Li, X., et al.: Science 324(5932), 1312 (2009)

    CAS  Google Scholar 

  150. Chen, C.-H., et al.: Small 8(1), 43 (2012)

    CAS  Google Scholar 

  151. Radisavljevic, B, et al.: Nat. Nanotechnol. 6(3), 147 (2011)

    Google Scholar 

  152. He, Q., et al.: Small 8(19), 2994 (2012)

    CAS  Google Scholar 

  153. Fang, H., et al.: Nano Lett. 12(7), 3788 (2012)

    CAS  Google Scholar 

  154. Huang, J.-K., et al.: ACS Nano 8(1), 923 (2013)

    Google Scholar 

  155. Pu, J., et al.: Nano Lett. 12(8), 4013 (2012)

    CAS  Google Scholar 

  156. Geim, A.K., Grigorieva, I.V.: Nature 499(7459), 419 (2013)

    CAS  Google Scholar 

  157. Wang, H., et al.: Nanoscale 6(21), 12250 (2014)

    CAS  Google Scholar 

  158. Buscema, M., et al.: Chem. Soc. Rev. 44(11), 3691 (2015)

    CAS  Google Scholar 

  159. Park, N.-M., Kim, T.-S., Park, S.-J.: Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78(17), 2575 (2001)

    CAS  Google Scholar 

  160. Partoens, B., Peeters, F.M.: From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74(7), 075404 (2006)

    Google Scholar 

  161. Wallace, P.R.: The band theory of graphite. Phys. Rev. 71(9), 622–634 (1947)

    CAS  Google Scholar 

  162. Wilder, J.W.G., et al.: Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998)

    Google Scholar 

  163. Golden, M.S., et al.: The electronic structure of fullerenes and fullerene compounds from high-energy spectroscopy. J. Phys.: Condens. Matter 7(43), 8219 (1995)

    CAS  Google Scholar 

  164. Herman, F.: Electronic structure of the diamond crystal. Phys. Rev. 88(5), 1210–1211 (1952)

    CAS  Google Scholar 

  165. Bauer, L.A., Birenbaum, N.S., Meyer, G.J.: Biological applications of high aspect ratio nanoparticles. J. Mater. Chem. 14(4), 517–526 (2004)

    CAS  Google Scholar 

  166. Yoriya, S., et al.: Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 μm to 222 μm in length. Sens. Lett. 4(3), 334–339 (2006)

    CAS  Google Scholar 

  167. Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum Dot Heterostructures, vol. 471973882. Wiley, Chichester (1999)

    Google Scholar 

  168. Xiang, J., et al.: Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441(7092), 489–493 (2006)

    CAS  Google Scholar 

  169. Lin, Y.-M., et al.: 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966), 662 (2010)

    CAS  Google Scholar 

  170. Liu, M., et al.: A graphene-based broadband optical modulator. Nature 474(7349), 64–67 (2011)

    CAS  Google Scholar 

  171. Kim, K.S., et al.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)

    CAS  Google Scholar 

  172. Kim, Y.J., et al.: Chemically modified multiwalled carbon nanotubes as an additive for supercapacitors. Small 2(3), 339–345 (2006)

    CAS  Google Scholar 

  173. Zhu, Y., et al.: Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011)

    CAS  Google Scholar 

  174. Dimitrakakis, G.K., Tylianakis, E., Froudakis, G.E.: Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8(10), 3166–3170 (2008)

    CAS  Google Scholar 

  175. Henwood, D., Carey, J.D.: Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes. Phys. Rev. B 75(24), 245413 (2007)

    Google Scholar 

  176. El-Kady, M.F., et al.: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)

    CAS  Google Scholar 

  177. Yang, X., et al.: Graphene uniformly decorated with gold nanodots: in situ synthesis, enhanced dispersibility and applications. J. Mater. Chem. 21(22), 8096–8103 (2011)

    CAS  Google Scholar 

  178. Schedin, F., et al.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)

    CAS  Google Scholar 

  179. Deng, M., et al.: Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sens. Actuators B: Chem. 158(1), 176–184 (2011)

    CAS  Google Scholar 

  180. Xu, M., Fujita, D., Hanagata, N.: Perspectives and challenges of emerging single-molecule DNA sequencing technologies. Small 5(23), 2638–2649 (2009)

    CAS  Google Scholar 

  181. Garaj, S., et al.: Graphene as a subnanometre trans-electrode membrane. Nature 467(7312), 190–193 (2010)

    CAS  Google Scholar 

  182. Wilson, N.R., et al.: Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3(9), 2547–2556 (2009)

    CAS  Google Scholar 

  183. Kim, K., et al.: A role for graphene in silicon-based semiconductor devices. Nature 479(7373), 338–344 (2011)

    CAS  Google Scholar 

  184. Castro, E., et al.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99(21), 216802 (2007)

    Google Scholar 

  185. McCann, E.: Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74(16), 161403 (2006)

    Google Scholar 

  186. Ohta, T., et al.: Controlling the electronic structure of bilayer graphene. Science (New York, N.Y.) 313(5789), 951–954 (2006)

    CAS  Google Scholar 

  187. Samuels, A.J., Carey, J.D.: Molecular doping and band-gap opening of bilayer graphene. ACS Nano 7(3), 2790–2799 (2013)

    CAS  Google Scholar 

  188. Zhang, Y., et al.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009)

    CAS  Google Scholar 

  189. Xu, M., et al.: Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)

    CAS  Google Scholar 

  190. Novoselov, K.S., et al.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)

    CAS  Google Scholar 

  191. Osada, M., Sasaki, T.: Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24(2), 210–228 (2012)

    CAS  Google Scholar 

  192. Giovannetti, G., et al.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76(7), 073103 (2007)

    Google Scholar 

  193. Sławioska, J., Zasada, I., Klusek, Z.: Energy gap tuning in graphene on hexagonal boron nitride bilayer system. Phys. Rev. B 81(15), 155433 (2010)

    Google Scholar 

  194. Zhang, H., et al.: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5(6), 438–442 (2009)

    CAS  Google Scholar 

  195. Tang, H., et al.: Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 5(9), 7510–7516 (2011)

    CAS  Google Scholar 

  196. Gourmelon, E., et al.: MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energy Mater. Sol. Cells 46(2), 115–121 (1997)

    CAS  Google Scholar 

  197. Eda, G., et al.: Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92(23), 233305 (2008)

    Google Scholar 

  198. Motohiko, E.: A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14(3), 033003 (2012)

    Google Scholar 

  199. Shahil, K.M.F., et al.: Crystal symmetry breaking in few-quintuple Bi2Te3 films: applications in nanometrology of topological insulators. Appl. Phys. Lett. 96(15), 153103 (2010)

    Google Scholar 

  200. Gamble, F.R., Silbernagel, B.G.: Anisotropy of the proton spin–lattice relaxation time in the superconducting intercalation complex TaS2 (NH3): structural and bonding implications. J. Chem. Phys. 63(6), 2544–2552 (1975)

    CAS  Google Scholar 

  201. Tang, X., et al.: Preparation and thermoelectric transport properties of high performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 90(1), 012102 (2007)

    Google Scholar 

  202. Ma, Y., Dai, Y., Guo, M., Niu, C., Huang, B.: Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3, 3883–3887 (2011)

    CAS  Google Scholar 

  203. Hong, X., Kim, J., Shi, S.F., Zhang, Y., Jin, C., Sun, Y., et al.: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014)

    CAS  Google Scholar 

  204. Xu, H., Wu, J., Feng, Q., Mao, N., Wang, C., Zhang, J.: High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 10, 2300–2306 (2014)

    CAS  Google Scholar 

  205. Zhang, W., Chuu, C.P., Huang, J.K., Chen, C.H., Tsai, M.L., Chang, Y.H., et al.: Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 4(3826), 1–8 (2014)

    Google Scholar 

  206. Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., et al.: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014)

    CAS  Google Scholar 

  207. Wi, S., Kim, H., Chen, M., Nam, H., Guo, L.J., Meyhofer, E., et al.: Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano 8, 5270–5281 (2014)

    CAS  Google Scholar 

  208. Choudhary, N., et al.: J. Mater. Res. 31, 824 (2016)

    CAS  Google Scholar 

  209. Varghese, S.S., et al.: Electronics 4, 651 (2015)

    CAS  Google Scholar 

  210. Lee, J., et al.: Sci. Rep. 4, 7352 (2014)

    CAS  Google Scholar 

  211. Perera-Lopez, N., et al.: 2D Mater. 1, 011004 (2014)

    Google Scholar 

  212. Choudhary, N., et al.: Sci. Rep. 6, 25456 (2016)

    CAS  Google Scholar 

  213. Lee, C.-H., et al.: Nat. Nanotechnol. 9, 676 (2014)

    CAS  Google Scholar 

  214. Mak, K.F., Shan, J.: Nat. Photonics 10, 216 (2016)

    CAS  Google Scholar 

  215. Lin, S., et al.: Sci. Rep. 5, 15103 (2015)

    CAS  Google Scholar 

  216. Wu, W., et al.: Nature 514, 470 (2014)

    CAS  Google Scholar 

  217. Choudhary, N., et al.: J. Mater. Chem. A 3, 24049 (2015)

    CAS  Google Scholar 

  218. Li, H., et al.: Small 8, 63 (2012)

    CAS  Google Scholar 

  219. Cui, S., et al.: Nat. Commun. 6, 8632 (2015)

    CAS  Google Scholar 

  220. Sarkar, D., et al.: ACS Nano 8, 3992 (2014)

    CAS  Google Scholar 

  221. Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., Geim, A.K.: Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007)

    Google Scholar 

  222. Dean, C.R., et al.: Nat. Nanotechnol. 5(10), 722 (2010)

    CAS  Google Scholar 

  223. Hsu, W.-T., et al.: ACS Nano 8(3), 2951 (2014)

    CAS  Google Scholar 

  224. Fang, H., et al.: Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)

    CAS  Google Scholar 

  225. Chiu, M.-H., et al.: ACS Nano 8(9), 9649 (2014)

    CAS  Google Scholar 

  226. Song, J.-G., et al.: ACS Nano 7, 11333 (2013)

    CAS  Google Scholar 

  227. Zhou, X., et al.: J. Am. Chem. Soc. 137, 7994 (2015)

    CAS  Google Scholar 

  228. Keum, D.H., et al.: Nat. Phys. 11, 482 (2015)

    CAS  Google Scholar 

  229. Ali, M.N., et al.: Nature 514, 205 (2014)

    CAS  Google Scholar 

  230. Lee, S.Y., et al.: ACS Nano 9, 9034 (2015)

    CAS  Google Scholar 

  231. Han, M.Y., et al.: Phys. Rev. Lett. 98, 206805 (2007)

    Google Scholar 

  232. Del Pozo-Zamudio, O., et al.: 2D Mater. 2, 035010 (2015)

    Google Scholar 

  233. Tongay, S., et al.: Nat. Commun. 5, 3252 (2014)

    Google Scholar 

  234. Kang, J., et al.: Proc. SPIE 9083, 908305 (2014)

    Google Scholar 

  235. Chen, C.-H., et al.: Nanomed. Nanotechnol. Biol. Med. 9(5), 600 (2013)

    CAS  Google Scholar 

  236. Zhu, C., et al.: J. Am. Chem. Soc. 135(16), 5998 (2013)

    CAS  Google Scholar 

  237. Loo, A.H., et al.: Nanoscale 6(20), 11971 (2014)

    CAS  Google Scholar 

  238. Loan, P.T.K., et al.: Adv. Mater. 26(28), 4838 (2014)

    CAS  Google Scholar 

  239. Mak, K.F., et al.: Nat. Mater. 12(3), 207 (2013)

    CAS  Google Scholar 

  240. Bernardi, M., et al.: Nano Lett. 13(8), 3664 (2013)

    CAS  Google Scholar 

  241. Furchi, M.M., et al.: Nano Lett. 14(8), 4785 (2014)

    CAS  Google Scholar 

  242. Lee, C.-H., et al.: Nat. Nanotechnol. 9(9), 676 (2014)

    CAS  Google Scholar 

  243. Wi, S., et al.: ACS Nano 8(5), 5270 (2014)

    CAS  Google Scholar 

  244. Tsai, M.-L., et al.: ACS Nano 8(8), 8317 (2014)

    CAS  Google Scholar 

  245. Shanmugam, M., et al.: Nanoscale 6(21), 12682 (2014)

    CAS  Google Scholar 

  246. Duan, X., et al.: Nat. Nanotechnol. 9, 1024 (2014)

    CAS  Google Scholar 

  247. Li, M.-Y., et al.: Science 349(6247), 524 (2015)

    CAS  Google Scholar 

  248. Roy, T., et al.: ACS Nano 8(6), 6259 (2014)

    CAS  Google Scholar 

  249. Fang, H., et al.: Nano Lett. 13(5), 1991 (2013)

    CAS  Google Scholar 

  250. Tosun, M., et al.: ACS Nano 8(5), 4948 (2014)

    CAS  Google Scholar 

  251. Liu, H., et al.: ACS Nano 8(4), 4033 (2014)

    CAS  Google Scholar 

  252. Das, S., Roelofs, A. In: 2014 72nd Annual Device Research Conference (DRC), p. 185 (2014)

    Google Scholar 

  253. Yu, L., et al.: Nano Lett. 15(8), 4928 (2015)

    CAS  Google Scholar 

  254. Britnell, L., et al.: Science 335(6071), 947 (2012)

    CAS  Google Scholar 

  255. Georgiou, T., et al.: Nat. Nanotechnol. 8(2), 100 (2013)

    CAS  Google Scholar 

  256. Yu, W.J., et al.: Nat. Mater. 12(3), 246 (2013)

    CAS  Google Scholar 

  257. Moriya, R., et al.: Appl. Phys. Lett. 105(8), 083119 (2014)

    Google Scholar 

  258. Sarkar, D., et al.: Nature 526(7571), 91 (2015)

    CAS  Google Scholar 

  259. Britnell, L., et al.: Science 340(6138), 1311 (2013)

    CAS  Google Scholar 

  260. Yu, W.J., et al.: Nat. Nanotechnol. 8(12), 952 (2013)

    CAS  Google Scholar 

  261. Cheng, R., et al.: Nano Lett. 14(10), 5590 (2014)

    CAS  Google Scholar 

  262. Deng, Y., et al.: ACS Nano 8(8), 8292 (2014)

    CAS  Google Scholar 

  263. Lopez-Sanchez, O., et al.: ACS Nano 8(3), 3042 (2014)

    CAS  Google Scholar 

  264. Pospischil, A., et al.: Nat. Nano 9(4), 257 (2014)

    CAS  Google Scholar 

  265. Baugher, B.W.H., et al.: Nat. Nano 9(4), 262 (2014)

    CAS  Google Scholar 

  266. Ross, J.S., et al.: Nat. Nano 9(4), 268 (2014)

    CAS  Google Scholar 

  267. Zhang, Y.-J., et al.: Science 344(6185), 725 (2014)

    CAS  Google Scholar 

  268. Withers, F., et al.: Nat. Mater. 14(3), 301 (2015)

    CAS  Google Scholar 

  269. Zhang, W., et al.: Sci. Rep. 4, 3826 (2014)

    CAS  Google Scholar 

  270. Roy, K., et al.: Nat. Nanotechnol. 8(11), 826 (2013)

    CAS  Google Scholar 

  271. Pop, E., et al.: MRS Bull. 37(12), 1273 (2012)

    CAS  Google Scholar 

  272. Chen, C.-C., et al.: Nano Res. 8(2), 666 (2015)

    CAS  Google Scholar 

  273. Astefanei, A., Núñez, O., Galceran, M.T.: Characterisation and determination of fullerenes: a critical review. Anal. Chim. Acta 882, 1–21 (2015). http://dx.doi.org/10.1016/j.aca.2015.03.025

    CAS  Google Scholar 

  274. Ibrahim, K.S.: Carbon nanotubes—properties and applications: a review. Carbon Lett. 14, 131–144 (2013). https://doi.org/10.5714/CL.2013.14.3.131

    Article  Google Scholar 

  275. Aqel, A., El-Nour, K.M.M.A., Ammar, R.A.A., Al-Warthan, A.: Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem. 5, 1–23 (2012). https://doi.org/10.1016/j.arabjc.2010.08.022

    Article  CAS  Google Scholar 

  276. Elliott, J.A., Shibuta, Y., Amara, H., Bichara, C., Neyts, E.C.: Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale 5, 6662 (2013). https://doi.org/10.1039/c3nr01925j

    Article  CAS  Google Scholar 

  277. Saeed, K., Khan, I.: Preparation and characterization of single-walled carbon nanotube/nylon 6,6 nanocomposites. Instrum. Sci. Technol. 44, 435–444 (2016). http://dx.doi.org/10.1080/10739149.2015.1127256

    Google Scholar 

  278. Saeed, K., Khan, I.: Preparation and properties of single-walled carbon nanotubes/poly(butylene terephthalate) nanocomposites. Iran. Polym. J. 23, 53–58 (2014). https://doi.org/10.1007/s13726-013-0199-2

    Article  CAS  Google Scholar 

  279. Ngoy, J.M., Wagner, N., Riboldi, L., Bolland, O.: A CO2 capture technology using multi-walled carbon nanotubes with polyaspartamide surfactant. Energy Procedia 63, 2230–2248 (2014). https://doi.org/10.1016/j.egypro.2014.11.242

    CAS  Google Scholar 

  280. Mabena, L.F., Sinha Ray, S., Mhlanga, S.D., Coville, N.J.: Nitrogen-doped carbon nanotubes as a metal catalyst support. Appl. Nanosci. 1, 67–77 (2011). https://doi.org/10.1007/s13204-011-0013-4

    Article  CAS  Google Scholar 

  281. Manyam, J., Manickam, M., Preece, J.A., Palmer, R.E., Robinson, A.P.G.: Proc. SPIE 7972, 79722N (2011). https://doi.org/10.1117/12.879469

    Article  CAS  Google Scholar 

  282. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: Nature 318, 162–163 (1985). https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  283. de Marneffe, J.F., Cooke, M., Goodyear, A., Braithwaite, N.S.J., Sutton, Y., Bowden, M., Altimarano-Sanchez, E., Zotovich, A., El Otell, Z., Chan, B.T., Knoll, A., Rawlings, C., Duerig, U., Spieser, M., Kaestner, M., Neuber, C., Rangelow, I.: Advanced etching for nano-devices and 2D materials. In: Proceedings of the 42nd International Conference on Micro and Nano Engineering, SNM-1-52016 (2016). https://www.researchgate.net/publication/308764935

  284. Gogolides, E., Argitis, P., Couladouros, E.A., Vidali, V.P., Vasilopoulou, M., Cordoyiannis, G., Diakoumakos, C.D., Tserepi, A.: J. Vac. Sci. Technol. B: Microelectron. Nanometer. Struct. Process. Meas. Phenom. 21, 141 (2003). https://doi.org/10.1116/1.1535930

    CAS  Google Scholar 

  285. Chen, X., Palmer, R.E., Robinson, A.P.G.: Nanotechnology 19, 275308 (2008). https://doi.org/10.1088/0957-4484/19/27/275308

    Article  CAS  Google Scholar 

  286. Tada, T., Kanayama, T.: Jpn. J. Appl. Phys. 35(Part 2), L63–L65 (1996). https://doi.org/10.1143/jjap.35.l63

    CAS  Google Scholar 

  287. Gibbons, F.P., Robinson, A.P.G., Palmer, R.E., Manickam, M., Preece, J.A.: Small 2, 1003–1006 (2006). https://doi.org/10.1002/smll.200500443

    Article  CAS  Google Scholar 

  288. Shi, X., Prewett, P., Huq, E., Bagnall, D.M., Robinson, A.P.G., Boden, S.A.: Microelectron. Eng. 155, 74–78 (2016). https://doi.org/10.1016/j.mee.2016.02.045

    Article  CAS  Google Scholar 

  289. Kim, H., Gilmore, C.M., Piqué, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B.: Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451–6461 (1999)

    CAS  Google Scholar 

  290. Haynes, W.M. (ed.): CRC Handbook of Chemistry and Physics. CRC Press (2016). http://www.hbcponline.com

  291. Pumera, M., Sofer, Z., Ambrosi, A.: Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2, 8981–8987 (2014)

    CAS  Google Scholar 

  292. Koskinen, P., Fampiou, I., Ramasubramaniam, A.: Density-functional tight-binding simulations of curvature-controlled layer decoupling and band-gap tuning in bilayer MoS2. Phys. Rev. Lett. 112, 186802 (2014)

    Google Scholar 

  293. Lee, H.S., Luong, D.H., Kim, M.S., Jin, Y., Kim, H., Yun, S., Lee, Y.H.: Reconfigurable exciton-plasmon interconversion for nanophotonic circuits. Nat. Commun. 7, 13663 (2016)

    CAS  Google Scholar 

  294. Mak, K.F., He, K., Shan, J., Heinz, T.F.: Control of valley polarization inmonolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012)

    CAS  Google Scholar 

  295. Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2D materialsand van der Waals heterostructures. Science 353, aac9439 (2016)

    CAS  Google Scholar 

  296. Cai, Y., et al.: Highly itinerant atomic vacancies in phosphorene. J. Am. Chem. Soc. 138, 10199–10206 (2016)

    CAS  Google Scholar 

  297. Zou, X., Liu, Y., Yakobson, B.I.: Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2013)

    CAS  Google Scholar 

  298. Zhou, W., et al.: Intrinsic structural defects in monolayer molybdenum disulphide. Nano Lett. 13, 2615–2622 (2013)

    CAS  Google Scholar 

  299. Elias, D., et al.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009)

    CAS  Google Scholar 

  300. Zhu, S., Li, T.: Hydrogenation enabled scrolling of graphene. J. Phys. D Appl. Phys. 46, 075301 (2013)

    Google Scholar 

  301. Zhu, S., Li, T.: Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 8, 2864–2872 (2014)

    CAS  Google Scholar 

  302. Blees, M.K., et al.: Graphene kirigami. Nature 524, 204–207 (2015)

    CAS  Google Scholar 

  303. Zhu, S., Huang, Y., Li, T.: Extremely compliant and highly stretchable patterned graphene. Appl. Phys. Lett. 104, 173103 (2014)

    Google Scholar 

  304. Li, T., et al.: Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20, 3274–3277 (2005)

    CAS  Google Scholar 

  305. Qi, Z., Campbell, D.K., Park, H.S.: Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami. Phys. Rev. B 90, 245437 (2014)

    Google Scholar 

  306. Bahamon, D., et al.: Graphene kirigami as a platform for stretchable and tunable quantum dot arrays. Phys. Rev. B 93, 235408 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loutfy H. Madkour .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madkour, L.H. (2019). Carbon Nanomaterials and Two-Dimensional Transition Metal Dichalcogenides (2D TMDCs). In: Nanoelectronic Materials. Advanced Structured Materials, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-030-21621-4_7

Download citation

Publish with us

Policies and ethics