Skip to main content

Applications of Nanomaterials and Nanoparticles

  • Chapter
  • First Online:
Nanoelectronic Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 116))

Abstract

Considering the unique properties discussed in Chap. 14, NSMs and NPs can be used in variety of applications. Some important of these are given below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, D., Xie, G., Luo, J.: Mechanical properties of nanoparticles: basics and applications. J. Phys. D Appl. Phys. 47, 13001 (2014). https://doi.org/10.1088/0022-3727/47/1/013001

    Article  CAS  Google Scholar 

  2. Kot, M., Major, Ł., Lackner, J.M., Chronowska-Przywara, K., Janusz, M., Rakowski, W.: Mechanical and tribological properties of carbon-based graded coatings. J. Nanomater. 2016, 1–14 (2016). https://doi.org/10.1155/2016/8306345

    Article  CAS  Google Scholar 

  3. Mallakpour, S., Sirous, F.: Surface coating of a-Al2O3 nanoparticles with poly(vinyl alcohol) as biocompatible coupling agent for improving properties of bio-active poly(amide-imide) based nanocomposites having l-phenylalanine linkages. Prog. Org. Coat. 85, 138–145 (2015). https://doi.org/10.1016/j.porgcoat.2015.03.021

    Article  CAS  Google Scholar 

  4. Shao, W., Nabb, D., Renevier, N., Sherrington, I., Luo, J.K.: Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition. IOP Conf. Ser. Mater. Sci. Eng. 40, 12043 (2012). https://doi.org/10.1088/1757-899X/40/1/012043

    Article  CAS  Google Scholar 

  5. Wang, Z., Ruan, J., Cui, D.: Advances and prospect of nanotechnology in stem cells. Nanoscale Res. Lett. 4, 593–605 (2009)

    Article  CAS  Google Scholar 

  6. Ricardo e Lino F, P.N.: Stem cell research meets nanotechnology. Revista Da Sociedade Portuguesa D Bioquimica, CanalBQ 7, 38–46 (2010)

    Google Scholar 

  7. Deb, K.D., Griffith, M., Muinck, E.D., Rafat, M.: Nanotechnology in stem cells research: advances and applications. Front Biosci (Landmark Ed) 17, 1747–1760 (2012)

    Article  CAS  Google Scholar 

  8. Loureiro, A., Azoia, N.G., Gomes, A.C., Cavaco-Paulo, A.: Albumin-based nanodevices as drug carriers. Curr. Pharm. Des. 22, 1371–1390 (2016)

    Article  CAS  Google Scholar 

  9. Martis, E., Badve, R., Degwekar, M.: Nanotechnology based devices and applications in medicine: an overview. Chron. Young Sci. 3, 68 (2012). https://doi.org/10.4103/2229-5186.94320

    Article  Google Scholar 

  10. Nikalje, A.P., 2015. Nanotechnology and its applications in medicine. Med Chem 5. http://dx.doi.org/10.4172/2161-0444.1000247

  11. Alexis, F., Pridgen, E., Molnar, L.K., Farokhzad, O.C.: Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008). https://doi.org/10.1021/mp800051m

    Article  CAS  Google Scholar 

  12. Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J.S., Hussain, A.: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016). https://doi.org/10.2147/NSA.S99986

    Article  CAS  Google Scholar 

  13. Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006). https://pubs.acs.org/doi/10.1021/jp057170o

    Article  CAS  Google Scholar 

  14. Calvo, P., Remuoon-Lopez, C., Vila-Jato, J.L., Alonso, M.J.: Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63, 125–132 (1997). http://dx.doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4

  15. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., Muller, R.N.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 110, 2574–2574 (2010). http://dx.doi.org/10.1021/cr900197g

    Article  CAS  Google Scholar 

  16. Khlebtsov, N.G., Dykman, L.A.: Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 111, 1–35 (2010). https://doi.org/10.1016/j.jqsrt.2009.07.012

    Article  CAS  Google Scholar 

  17. Zhang, J., Saltzman, M.: Engineering biodegradable nanoparticles for drug and gene delivery. Chem. Eng. Prog. 109, 25–30 (2013)

    CAS  Google Scholar 

  18. Prashant, K.J., Ivan, H.S.: Au NPs target cancer. Nanotoday 2, 19–29 (2007)

    Google Scholar 

  19. Chen, C., Xing, G., Wang, J., Zhao, Y., Li, B., Tang, J., Jia, G., Wang, T., Sun, J., Xing, L., Yuan, H., Gao, Y., Meng, H., Chen, Z., Zhao, F., Chai, Z., Fang, X.: Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett. 5, 2050–2057 (2005). http://dx.doi.org/10.1021/nl051624b

    Article  CAS  Google Scholar 

  20. AshaRani, P.V., Low Kah Mun, G., Hande, M.P., Valiyaveettil, S.: Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 3, 279–290 (2009). https://doi.org/10.1021/nn800596w

    Article  CAS  Google Scholar 

  21. Hajipour, M.J., Fromm, K.M., Ashkarran, A. Akbar, de Aberasturi, D. Jimenez, de Larramendi, I.R., Rojo, T., Serpooshan, V., Parak, W.J., Mahmoudi, M.: Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511 (2012). http://dx.doi.org/10.1016/j.tibtech.2012.06.004

    Article  CAS  Google Scholar 

  22. Akhavan, O., Azimirad, R., Safa, S., Hasani, E.: CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem. 21, 9634 (2011). https://doi.org/10.1039/c0jm04364h

    Article  CAS  Google Scholar 

  23. Pant, H.R., Pant, B., Sharma, R.K., Amarjargal, A., Kim, H.J., Park, C.H., Tijing, L.D., Kim, C.S.: Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceram. Int. 39, 1503–1510 (2013). https://doi.org/10.1016/j.ceramint.2012.07.097

    Article  CAS  Google Scholar 

  24. Qu, Z., Liu, P., Yang, X., Wang, F., Zhang, W., Fei, C.: Microstructure and characteristic of BiVO4 prepared under different pH values: photocatalytic efficiency and antibacterial activity. Materials 9, 129 (2016). https://doi.org/10.3390/ma9030129

    Article  CAS  Google Scholar 

  25. Yin, Q., Wu, W., Qiao, R., Ke, X., Hu, Y., Li, Z.: Glucoseassisted transformation of Ni-doped-ZnO@carbon to a Ni-doped-ZnO@void@SiO2 core–shell nanocomposite photocatalyst. RSC Adv. 6, 38653–38661 (2016). https://doi.org/10.1039/C5RA26631A

    Article  CAS  Google Scholar 

  26. Dong, H., Wen, B., Melnik, R.: Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci. Rep. 4, 7037 (2014). https://doi.org/10.1038/srep07037

    Article  CAS  Google Scholar 

  27. Ma, E.: Nanocrystalline materials: controlling plastic instability. Nat. Mater. 2, 7–8 (2003). https://doi.org/10.1038/nmat797

    Article  CAS  Google Scholar 

  28. Todescato, F., Fortunati, I., Minotto, A., Signorini, R., Jasieniak, J., Bozio, R.: Engineering of semiconductor nanocrystals for light emitting applications. Materials 9, 672 (2016). http://dx.doi.org/10.3390/ma9080672

    Article  Google Scholar 

  29. Weiss, J., Takhistov, P., McClements, D.J.: Functional materials in food nanotechnology. J. Food Sci. 71, R107–R116 (2006). https://doi.org/10.1111/j.1750-3841.2006.00195.x

    Article  CAS  Google Scholar 

  30. Lei, Y.-M., Huang, W.-X., Zhao, M., Chai, Y.-Q., Yuan, R., Zhuo, Y.: Electrochemiluminescence resonance energy transfer system: mechanism and application in ratiometric aptasensor for lead ion. Anal. Chem. 87, 7787–7794 (2015). https://doi.org/10.1021/acs.analchem.5b01445

    Article  CAS  Google Scholar 

  31. Khlebtsov, N., Dykman, L.: Plasmonic nanoparticles, pp. 37–85 (2010). http://dx.doi.org/10.1201/9781439806296-c2

    Google Scholar 

  32. Unser, S., Bruzas, I., He, J., Sagle, L.: Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15, 15684–15716 (2015). https://doi.org/10.3390/s150715684

    Article  Google Scholar 

  33. Ripp, S., Henry, T.B. (eds.): Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats around Us, ACS Symposium Series. American Chemical Society, Washington DC (2011). http://dx.doi.org/10.1021/bk-2011-1079

    Google Scholar 

  34. Zhuang, J., Gentry, R.W.: Environmental application and risks of nanotechnology: a balanced view, pp. 41–67 (2011). http://dx.doi.org/10.1021/bk-2011-1079.ch003

    Google Scholar 

  35. Golobič, M., Jemec, A., Drobne, D., Romih, T., Kasemets, K., Kahru, A.: Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environ. Sci. Technol. 46, 12112–12119 (2012). https://doi.org/10.1021/es3022182

    Article  CAS  Google Scholar 

  36. Masciangioli, T., Zhang, W.-X.: Peer reviewed: environmental technologies at the nanoscale. Environ. Sci. Technol. 37, 102A–108A (2003). https://doi.org/10.1021/es0323998

    Article  CAS  Google Scholar 

  37. Swadeshmukul, S., Peng, Z., Kemin, W., Rovelyn, T., Weihong, T.: Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 73, 4988–4993 (2001). https://doi.org/10.1021/AC010406+

    Article  Google Scholar 

  38. Tratnyek, P.G., Johnson, R.L.: Nanotechnologies for environmental cleanup. Nano Today 1, 44–48 (2006). https://doi.org/10.1016/S1748-0132(06),70048-2

    Article  Google Scholar 

  39. Mueller, N.C., Nowack, B.: Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447–4453 (2008). https://doi.org/10.1021/es7029637

    Article  CAS  Google Scholar 

  40. Rogozea, E.A., Petcu, A.R., Olteanu, N.L., Lazăr, C.A., Cadar, D., Mihaly, M.: Tandem adsorption-photodegradation activity induced by light on NiO-ZnO p–n couple modified silica nanomaterials. Mater. Sci. Semicond. Process. 57, 1–11 (2017). http://dx.doi.org/10.1016/j.mssp.2016.10.006

    Article  CAS  Google Scholar 

  41. Olteanu, N.L., Lazăr, C.A., Petcu, A.R., Meghea, A., Rogozea, E.A., Mihaly, M.: “One-pot” synthesis of fluorescent Au@SiO2 and SiO2@Au nanoparticles. Arab. J. Chem. 9, 854–864 (2016). http://dx.doi.org/10.1016/j.arabjc.2015.12.014

  42. Olteanu, N.L., Rogozea, E.A., Popescu, S.A., Petcu, A.R., Lazăr, C. A., Meghea, A., Mihaly, M.: “One-pot” synthesis of Au–ZnO–SiO2 nanostructures for sunlight photodegradation. J. Mol. Catal. A: Chem. 414, 148–159 (2016). http://dx.doi.org/10.1016/j.molcata.2016.01.007

    Article  CAS  Google Scholar 

  43. Rogozea, E.A., Olteanu, N.L., Petcu, A.R., Lazăr, C.A., Meghea, A., Mihaly, M.: Extension of optical properties of ZnO/SiO2 materials induced by incorporation of Au or NiO nanoparticles. Opt. Mater. 56, 45–48 (2016). https://doi.org/10.1016/j.optmat.2015.12.020

    Article  CAS  Google Scholar 

  44. Kosmala, A., Wright, R., Zhang, Q., Kirby, P.: Synthesis of silver nano particles and fabrication of aqueous Ag inks for inkjet printing. Mater. Chem. Phys. 129, 1075–1080 (2011). http://dx.doi.org/10.1016/j.matchemphys.2011.05.064

    Article  CAS  Google Scholar 

  45. Holzinger, M., Le Goff, A., Cosnier, S.: Nanomaterials for biosensing applications: a review. Front. Chem. 2, 63 (2014). http://dx.doi.org/10.3389/fchem.2014.00063

  46. Millstone, J.E., Kavulak, D.F.J., Woo, C.H., Holcombe, T.W., Westling, E.J., Briseno, A.L., Toney, M.F., Fre´chet, J.M.J.: Synthesis, properties, and electronic applications of size-controlled poly (3-hexylthiophene) nanoparticles. Langmuir 26, 13056–13061 (2010). https://doi.org/10.1021/la1022938

    Article  CAS  Google Scholar 

  47. Shaalan, M., Saleh, M., El-Mahdy, M., El-Matbouli, M.: Recent progress in applications of nanoparticles in fish medicine: a review. Nanomed. Nanotechnol. Biol. Med. 12, 701–710 (2016). http://dx.doi.org/10.1016/j.nano.2015.11.005

    Article  CAS  Google Scholar 

  48. Cushing, B.L., Kolesnichenko, V.L., O’Connor, C.J.: Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004). https://doi.org/10.1021/cr030027b

    Article  CAS  Google Scholar 

  49. O’Brien, S., Brus, L., Murray, C.B.: Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085–12086 (2001). https://doi.org/10.1021/ja011414a

    Article  CAS  Google Scholar 

  50. Avasare, V., Zhang, Z., Avasare, D., Khan, I., Qurashi, A.: Room-temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production. Int. J. Energy Res. 39, 1714–1719 (2015). https://doi.org/10.1002/er.3372

    Article  CAS  Google Scholar 

  51. Ning, F., Shao, M., Xu, S., Fu, Y., Zhang, R., Wei, M., Evans, D.G., Duan, X.: TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ. Sci. 9, 2633–2643 (2016). http://dx.doi.org/10.1039/C6EE01092J

    Article  CAS  Google Scholar 

  52. Fang, X.-Q., Liu, J.-X., Gupta, V.: Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale 5, 1716 (2013). https://doi.org/10.1039/c2nr33531j

    Article  CAS  Google Scholar 

  53. Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R.S.: Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116, 3722–3811 (2016). https://doi.org/10.1021/acs.chemrev.5b00482

    Article  CAS  Google Scholar 

  54. Li, D., Baydoun, H., Verani, C.N., Brock, S.L.: Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138, 4006–4009 (2016). https://doi.org/10.1021/jacs.6b01543

    Article  CAS  Google Scholar 

  55. Nagarajan, P.K., Subramani, J., Suyambazhahan, S., Sathyamurthy, R.: Nanofluids for solar collector applications: a review. Energy Procedia 61, 2416–2434 (2014). https://doi.org/10.1016/j.egypro.2014.12.017

    Article  CAS  Google Scholar 

  56. Sagadevan, S.: A review on role of nanofluids for solar energy applications, vol. 3, p. 53 (2015). http://www.sciencepublishinggroup.com, http://dx.doi.org/10.11648/J.NANO.20150303.14

  57. Young, K.J., Martini, L.A., Milot, R.L., Snoeberger, R.C., Batista, V.S., Schmuttenmaer, C.A., Crabtree, R.H., Brudvig, G.W.: Light-driven water oxidation for solar fuels. Coord. Chem. Rev. (2012). http://dx.doi.org/10.1016/j.ccr.2012.03.031

  58. Zhou, Y., Dong, C.-K., Han, L., Yang, J., Du, X.-W.: Topdown preparation of active cobalt oxide catalyst. ACS Catal. 6, 6699–6703 (2016). https://doi.org/10.1021/acscatal.6b02416

    Article  CAS  Google Scholar 

  59. Greeley, J., Markovic, N.M.: The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ. Sci. 5 (2012). http://dx.doi.org/10.1039/c2ee21754f

    Article  CAS  Google Scholar 

  60. Liu, D., Li, C., Zhou, F., Zhang, T., Zhang, H., Li, X., Duan, G., Cai, W., Li, Y.: Rapid synthesis of monodisperse Au nanospheres through a laser irradiation-induced shape conversion, self-assembly and their electromagnetic coupling SERS enhancement. Sci. Rep. 5, 7686 (2015). https://doi.org/10.1038/srep07686

    Article  CAS  Google Scholar 

  61. Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y., Lee, S.-T., Zhong, J., Kang, Z.: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 80(347), 970–974 (2015). http://dx.doi.org/10.1126/science.aaa3145

    Article  CAS  Google Scholar 

  62. Wang, D.-W., Su, D.: Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7, 576 (2014). http://dx.doi.org/10.1039/c3ee43463j

    Article  Google Scholar 

  63. Wang, Z., Pan, X., He, Y., Hu, Y., Gu, H., Wang, Y., Wang, Z., Pan, X., He, Y., Hu, Y., Gu, H., Wang, Y.: Piezoelectric nanowires in energy harvesting applications. Adv. Mater. Sci. Eng. 2015, 1–21 (2015). https://doi.org/10.1155/2015/165631

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loutfy H. Madkour .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madkour, L.H. (2019). Applications of Nanomaterials and Nanoparticles. In: Nanoelectronic Materials. Advanced Structured Materials, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-030-21621-4_15

Download citation

Publish with us

Policies and ethics