Skip to main content

The Effect of Heat-Treatment and Bioresorbability of Silicate-Containing Hydroxyapatite

  • Conference paper
  • First Online:
  • 801 Accesses

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

The possibility of modification of hydroxyapatite of a prototype extracellular liquid synthesized from solution under close physiological conditions by silicate ions was studied. The formation of chemically structured hydroxyapatite with various degrees of substitution of phosphate groups in silicate groups was established by chemical and X-ray diffraction analysis, IR spectroscopy and optical microscopy. It is shown that apatite modified by silicon has an imperfect structure and crystallizes in the nanocrystalline state. It was found that during the experiment an increase in the calcination temperature to 200–1000 °C leads to weight loss. The greatest loss of mass occurs at temperatures in the range of 25–400 °C, which is due to the removal of crystallization and adsorption water and volatile impurities. Three main stages of thermal decomposition of Si-HA are isolated, the final product is a mixture consisting of two phases: Si-HA and β-TKF. The results of the research can be used to study the kinetics of dissolution and the biocompatibility of ceramic materials for medicine, namely for reconstructive surgery, dentistry, and development of drug delivery systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bandyopadhyay A, Bernard S, Xue W, Bose S (2006) Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO and SiO2 dopants. J Am Ceram Soc 89:2675–2678

    Article  Google Scholar 

  • Berdinskaya MV, Golovanova OA, Zaits AV, Drozdov VI, Leont’eva NN Anthonicheva NV (2014) A physicochemical study of the structure, composition, and properties of hydroxylapatite modified by silicate ions. J Struct Chem 5:954–961

    Article  Google Scholar 

  • Chang MC, Кo CC, Douglas WH (2003) Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24:2853–2862

    Article  Google Scholar 

  • Golovan AP, Turov VV, Barvinchenko VM, Mishchenko VM, Gorbik PP, Shevchenko YB (2007) Nanostructured composites based on proteins of bone tissue, highly disperse silica and hydroxyapatite. J Khimiya, fizika ta tekhnologiya poverhni 13:309–316

    Google Scholar 

  • Gomes S, Nedelec J, Jallot E, Sheptyakov D, Renaudin G (2011) Silicon location in silicate-substituted calcium phosphate ceramics determined by neutron diffraction. J Cryst Growth Des 11:4017–4026

    Article  Google Scholar 

  • Grubova IY, Ivanova AA, Primak O, Epple M (2014) Osteoinductive coatings based on silicon-substituted hydroxylapatite: physical and chemical properties and in vitro studies. New technologies for creating and using bioceramics in regenerative medicine, pp 154–159

    Google Scholar 

  • Hench L, Jones D (2007) Biomaterials, artificial organs and tissue engineering. J Technosphere 301

    Google Scholar 

  • Khlusov IA, Surmeneva MA, Surmenev RA, Ryazantseva NV, Saveleva OE, Ivanova AA, Prokhorenko TS, Tashireva LA, Dvornichenko MV, Pichugin VF (2012) Cell-molecular aspects of immunological compatibility of implants with nanostructured calcium-phosphate coating. J Bull Siberian Med 4:78–85

    Google Scholar 

  • Marchat D, Zymelka M, Coelho C et al (2013) Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized in a new deposition pathway. Acta Biomater 9:6992–7004

    Article  Google Scholar 

  • Meshkova NP, Severina SE (1979) Workshop on biochemistry. Moscow State University, Moscow

    Google Scholar 

  • Morgan H, Wilson RM, Elliott JC, Dowker SE et al (2000) Preparation and characterisation of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate. J Biomater 21:617–627

    Article  Google Scholar 

  • Murugan R, Ramakrishna S (2005) Crystallografic study of hydroxyapatite bioceramics derived from various sources. J Cryst Growth Des 5:111–116

    Article  Google Scholar 

  • Saki M (2009) Biocompatibility study of a hydroxyapatite-alumina and silicon carbide composite scaffold for bone tissue engineering. J Yakhteh 11:55–60

    Google Scholar 

  • Soin AV, Evdokimov PV, Veresov AG, Putlyaev VI (2007) Synthesis and study of silicon-substituted hydroxyapatites Ca10(PO4), 6–x(SiO4)x(OH). J Altern Energy Ecol 45:130

    Google Scholar 

  • Solonenko AP, Golovanova OA (2013) Thermal effects in composite materials based on calcium phosphates. Russ J Inorg Chem 1–2:33–38

    Google Scholar 

  • Solonenko AP, Golovanova OA (2014) Silicate-substituted carbonated hydroxyapatite powders prepared by precipitation from aqueous solutions. Russ J Inorg Chem 59:1228–1236

    Article  Google Scholar 

  • Tkhuan LV, Dat DV, Temirkhanova GE (2011) Synthesis and investigation of the morphology of silicon substituted hydroxyapatite, in Sbornik material. IV Vserossiiskoi konferentsii “Nauchnaya initsiativa inostrannykh studentov and aspirantov rossiiskikh vuzov”. pp 346–349 (in Russian)

    Google Scholar 

  • Wang Y, Zhang S, Zeng X, Cheng K, Qian M, Weng W (2007) In vitro behavior of fluoridated hydroxyapatite coatings inorganic-containing simulated body fluid. J Mater Sci Eng 27:244–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Golovanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panova, T., Golovanova, O.A. (2020). The Effect of Heat-Treatment and Bioresorbability of Silicate-Containing Hydroxyapatite. In: Frank-Kamenetskaya, O., Vlasov, D., Panova, E., Lessovaia, S. (eds) Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-21614-6_7

Download citation

Publish with us

Policies and ethics