Skip to main content

Health Spending, Education and Endogenous Demographics in an OLG Model

  • Chapter
  • First Online:

Abstract

We present a model of endogenous aging with public expenditure on health and pensions financed by an income tax. We show that government policies on health and pensions might lift an economy from a low to a high income steady state. In particular, the impact of an increase in the income tax is non-monotonic and depends on the initial levels of income and longevity: it is positive at low levels, and negative at high levels. On the other hand, a change in the allocation of public spending from social security benefits to health expenditures, without varying the tax rate, always increases income, even though pension benefits might decrease, and the problem of population aging could worsen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In particular:

    $$\displaystyle \begin{aligned} \hat{\tau}=\frac{\alpha\epsilon}{(1-\lambda)(1-\alpha)(1-\epsilon)} \end{aligned} $$
    (7.63)
  2. 2.

    For the sake of simplicity we do not consider the case of multiple steady states, that is \(\hat {A}<A<\tilde {A}\).

  3. 3.

    In particular, τ < τMAX is a sufficient condition to ensure \(\bar {A}>\tilde {A}\) (see Appendix 1), where:

    $$\displaystyle \begin{aligned} \tau^{MAX}=\bar{p}^{1/\epsilon} \frac{\delta z(1-\delta)^{1/(E-1)}}{\lambda}. \end{aligned} $$
    (7.64)

References

  • Aísa, R., J. Clemente, and F. Pueyo (2014). The influence of (public) health expenditure on longevity. International journal of public health59(5), 867–875.

    Article  Google Scholar 

  • Apps, P. and R. Rees (2001). Household production, full consumption and the costs of children. Labour Economics8(6), 621–648.

    Article  Google Scholar 

  • Barthold, D., A. Nandi, J. M. Mendoza Rodríguez, and J. Heymann (2014). Analyzing whether countries are equally efficient at improving longevity for men and women. American journal of public health104(11), 2163–2169.

    Article  Google Scholar 

  • Bhattacharya, J. and X. Qiao (2007). Public and private expenditures on health in a growth model. Journal of Economic Dynamics and Control31(8), 2519–2535.

    Article  Google Scholar 

  • Blackburn, K. and G. P. Cipriani (2005). Intergenerational transfers and demographic transition. Journal of Development Economics78(1), 191–214.

    Article  Google Scholar 

  • Boldrin, M. and A. Montes (2005). The intergenerational state education and pensions. The Review of Economic Studies72(3), 651–664.

    Article  Google Scholar 

  • Chakraborty, S. (2004). Endogenous lifetime and economic growth. Journal of Economic Theory1(116), 119–137.

    Article  Google Scholar 

  • Chakraborty, S. and M. Das (2005). Mortality, human capital and persistent inequality. Journal of Economic growth10(2), 159–192.

    Article  Google Scholar 

  • Cigno, A. (1993). Intergenerational transfers without altruism: family, market and state. European Journal of Political Economy9(4), 505–518.

    Article  Google Scholar 

  • Cigno, A. and F. C. Rosati (1992). The effects of financial markets and social security on saving and fertility behavior in Italy. Journal of population economics5(4), 319–341.

    Article  Google Scholar 

  • Cigno, A. and M. Werding (2007). Children and pensions. MIT Press.

    Book  Google Scholar 

  • Cipriani, G. P. (2014). “Population aging and PAYG pensions in the OLG model”. Journal of Population Economics27, 251–256.

    Article  Google Scholar 

  • Cipriani, G. P. (2018). Aging, retirement, and pay-as-you-go pensions. Macroeconomic Dynamics22, 1173–1183.

    Article  Google Scholar 

  • Cipriani, G. P. and M. Makris (2012). Payg pensions and human capital accumulation: some unpleasant arithmetic. The Manchester School80(4), 429–446.

    Article  Google Scholar 

  • Cipriani, G. P. and F. Pascucci (2018). Pension policies in a model with endogenous fertility. Journal of Pension Economics & Finance, 1–17.

    Google Scholar 

  • Cutler, D. M. and A. Lleras-Muney (2012). Education and health: insights from international comparisons. Technical report, National Bureau of Economic Research.

    Google Scholar 

  • de la Croix, D. and M. Doepke (2003). Inequality and growth: why differential fertility matters. American Economic Review93(4), 1091–1113.

    Article  Google Scholar 

  • de la Croix, D. and M. Doepke (2004). Public versus private education when differential fertility matters. Journal of Development Economics73(2), 607–629.

    Article  Google Scholar 

  • Dedry, A., H. Onder, and P. Pestieau (2017). Aging, social security design, and capital accumulation. The Journal of the Economics of Ageing9, 145–155.

    Article  Google Scholar 

  • Ehrlich, I. and J.-G. Zhong (1998). Social security and the real economy: An inquiry into some neglected issues. The American Economic Review88(2), 151–157.

    Google Scholar 

  • Fanti, L. and L. Gori (2008). Longevity and PAYG pension systems sustainability. Economics Bulletin10(2), 1–8.

    Google Scholar 

  • Fanti, L. and L. Gori (2014). Endogenous fertility, endogenous lifetime and economic growth: the role of child policies. Journal of Population Economics27(2), 529–564.

    Article  Google Scholar 

  • Feldstein, M. (1985). The optimal level of social security benefits. The Quarterly Journal of Economics100(2), 303–320.

    Article  Google Scholar 

  • Fenge, R. and B. Scheubel (2017). Pensions and fertility: back to the roots. Journal of Population Economics30(1), 93–139.

    Article  Google Scholar 

  • Fiaschi, D. and T. Fioroni (2017). Adult mortality and modern growth. In Demographic Change and Long-Run Development, M. Cervellati and U. Sunde (eds), MIT Press.

    Google Scholar 

  • Fiaschi, D. and T. Fioroni (2019). Transition to modern growth in Great Britain: the role of technological progress, adult mortality and factor accumulation. Structural Change and Economic Dynamics (https://doi.org/10.1016/j.strueco.2019.02.007).

    Article  Google Scholar 

  • Fioroni, T. (2010). Child mortality and fertility: public vs. private education. Journal of Population Economics23(1), 73–97.

    Article  Google Scholar 

  • Hazan, M. and B. Berdugo (2002). Child Labour, Fertility, and Economic Growth. The Economic Journal112(482), 810–828.

    Article  Google Scholar 

  • Jenkner, M. E. and A. Leive (2010). Health care spending issues in advanced economies. Number 2010–2016. International Monetary Fund.

    Article  Google Scholar 

  • Lorentzen, P., J. McMillan, and R. Wacziarg (2008). Death and development. Journal of economic growth13(2), 81–124.

    Article  Google Scholar 

  • Moav, O. (2005). Cheap Children and the Persistence of Poverty. The Economic Journal115, 88–110.

    Article  Google Scholar 

  • Obrizan, M. and G. L. Wehby (2018). Health expenditures and global inequalities in longevity. World Development101, 28–36.

    Article  Google Scholar 

  • OECD (2011). “Labour: Unit labour cost - quarterly indicators - benchmarked”. Main Economic Indicators (database). https://doi.org/10.1787/data-00051-en.

  • OECD (2017). Health at a glance 2017. OECD Indicators, OECD Publishing, Paris.

    Google Scholar 

  • United Nations (2017). World population prospects the 2017 revision. New York.

    Google Scholar 

  • Yew, S. L. and J. Zhang (2018). Health spending, savings and fertility in a lifecycle-dynastic model with longevity externalities. Canadian Journal of Economics/Revue canadienne d’économique51(1), 186–215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Fioroni .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Dynamics of Income Per Capita

We present some general properties of yt+1 with respect to yt derived from Eq. (7.22).

  • yt+1 is strictly increasing and continuous in the interval (0, + ):

    $$\displaystyle \begin{aligned} \lim_{y_t \to \hat{y}^-} y_{t+1}=\lim_{y_t \to \hat{y}^+} y_{t+1}=\left\{\frac{\alpha\beta p(\hat{y})}{\gamma[\alpha+\tau(1-\alpha)(1-\lambda)]} \right\}^{\alpha} \end{aligned} $$
    (7.35)
  • The function ∂yt+1∂yt is discontinuous at \(\hat {y}\), in particular:

    $$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \lim_{y_t \to \hat{y}^-}\frac{\partial y_{t+1}}{\partial y_{t}}- \lim_{y_t \to \hat{y}^+}\frac{\partial y_{t+1}}{\partial y_{t}}= -Ap(\hat{y})^{\alpha}\\ &\displaystyle &\displaystyle \quad A\left\{\frac{\alpha \beta}{\gamma \delta [\alpha +\tau(1-\alpha)(1-\lambda)]}\right\}^{\alpha} \frac{\delta^2z(1-\alpha)}{1-\delta}<0\qquad \end{array} \end{aligned} $$
    (7.36)

    When we specify adult survival, from Eq. (7.28) we get that:

  • ∂yt+1∂y > 0 in the interval (0, + ), that is:

    $$\displaystyle \begin{aligned} \frac{\partial{y_{t+1}}}{\partial{y_t}}=\left\{ \begin{array}{ll} A \alpha \Psi (1+\epsilon) x^{\alpha} y_t^{\alpha(1+\epsilon)-1} &\ \ \text{if}\ 0 \leq y_{t}\leq \hat{y}, \\ {} A \Delta (x y_t^{\epsilon})^{\alpha}[z(1-\alpha)y_t-1]^{\alpha+\delta(1-\alpha)}\\ \begin{array}{l}\quad \left(\frac{\alpha\epsilon}{y_t}+\frac{[\alpha+\delta(1-\alpha)]z(1-\alpha)}{z(1-\alpha)y_t-1}\right)\end{array} &\text{ if}\ \hat{y}<y_t<\bar{y}, \\ {} A \Delta \bar{p}^{\alpha}[z(1-\alpha)y_t-1]^{\alpha+\delta(1-\alpha)-1}z(1-\alpha)\\ \begin{array}{l}\quad [\alpha+\delta(1-\alpha)]\end{array} &\text{ if}\ y_t>\bar{y} \end{array} \right. \end{aligned} $$
    (7.37)
  • The function ∂yt+1∂yt is discontinuous at \(\hat {y}\) and \(\bar {y}\), in particular:

    $$\displaystyle \begin{aligned} \begin{cases} \lim_{y_t \to \hat{y}^-}\frac{\partial y_{t+1}}{\partial y_{t}}< \lim_{y_t \to \hat{y}^+}\frac{\partial y_{t+1}}{\partial y_{t}} &\\ \lim_{y_t \to \bar{y}^-}\frac{\partial y_{t+1}}{\partial y_{t}}> \lim_{y_t \to \bar{y}^+}\frac{\partial y_{t+1}}{\partial y_{t}} \end{cases} \end{aligned} $$
    (7.38)
  • From Eq. (7.37) it is easy to note that in the range \(0\leq y_t \leq \hat {y}\), \(\partial ^2 y_{t+1}/\partial y_t^2<0\) if:

    $$\displaystyle \begin{aligned} \epsilon<\frac{1-\alpha}{\alpha} \end{aligned} $$
    (7.39)

    In the interval \(\hat {y} \leq y_t \leq \bar {y}\):

    $$\displaystyle \begin{aligned} \frac{\partial^2 y_{t+1}}{\partial y^2_t}=\chi\left\{ [z(1-\alpha)y_t]^2(2-E-Q)+2z(1-\alpha)y_t(E-1)-E\right\}, \end{aligned} $$
    (7.40)

    where: \(\chi =y_{t+1} \alpha \epsilon z(1-\alpha ) [\alpha +\delta (1-\alpha )]/y^2_t z(1-\alpha ) [z(1-\alpha )y_t-1]^2\), E = (1 − α𝜖)∕[α + δ(1 − α)] and Q = (1 − α)(1 − δ)∕α𝜖.

    It is easy to note that if E > 1, then Q > 1 and therefore E + Q > 2. In this case, therefore, \(\partial ^2 y_{t+1}/\partial y^2_t<0\) if:

    $$\displaystyle \begin{aligned} T(y_t)=-[z(1-\alpha)y_t]^2(E+Q-2)+2z(1-\alpha)y_t(E-1)-E<0. \end{aligned} $$
    (7.41)

    This is a concave downward function and thus if the maximum value of this function is negative then this function is always negative. In particular, given the maximum point:

    $$\displaystyle \begin{aligned} y^{MAX}=\frac{E-1}{(E+Q-2)z(1-\alpha)}, \end{aligned} $$
    (7.42)

    we get that the maximum value of the function is always negative, that is:

    $$\displaystyle \begin{aligned} T_{y_t=y^{MAX}}=\frac{1-EQ}{E+Q-2}=\frac{1}{-\delta(1-\alpha)-\alpha(1+\epsilon)}<0. \end{aligned} $$
    (7.43)

    In short \(\partial ^2 y_{t+1}/\partial y^2_t<0\) if E > 1, that is:

    $$\displaystyle \begin{aligned} \epsilon<\frac{(1-\alpha)(1-\delta)}{\alpha}, \end{aligned} $$
    (7.44)

    note that if this condition is satisfied then so is (7.39).

    Finally when \(y_t>\bar {y}\), from Eq. (7.37) it is easy to note that \(\partial ^2 y_{t+1}/\partial y^2_t<0\).

1.1 Equilibria

Assuming that the condition in Eq. (7.44) holds then:

  • In the range \(0\leq y_t \leq \hat {y}\) the economy can reach the steady state:

    $$\displaystyle \begin{aligned} y_L=(A\Psi x^\alpha)^{\frac{1}{1-\alpha(1+\epsilon)}} \end{aligned} $$
    (7.45)

    The necessary and sufficient condition for the existence of such equilibrium is that \(y_L<\hat {y}\) (or \(\left . y_{t+1}\right \vert { }_{y_{t}=\hat {y}}<\hat {y}\) ). This holds if \(A \leq \tilde {A}\), where:

    $$\displaystyle \begin{aligned} \tilde{A}=\frac{\hat{y}^{1-(1+\epsilon)\alpha}}{x^{\alpha}\Psi}=\frac{\hat{y}^{1-\alpha\epsilon}}{\Delta x^{\alpha}[z(1-\alpha)\hat{y}-1]^{\alpha+\delta(1-\alpha)}} \end{aligned} $$
    (7.46)

    In summary there exists one stable equilibrium in the range \(y_t \in (0, \hat {y}]\) if:

    $$\displaystyle \begin{aligned} A\leq\tilde{A} \end{aligned} $$
    (7.47)
  • In the range \(y_t \in (\hat {y}, \bar {y}]\) different scenarios can arise.

    In particular, \(\left .y_{t+1} \right \vert { }_{y_{t}=\bar {y}} > \bar {y}\) if \(A\geq \bar {A}\) with:

    $$\displaystyle \begin{aligned} \bar{A}=\frac{\bar{y}}{\Delta \bar{p}^{\alpha}[z(1-\alpha)\bar{y}-1]^{\alpha+\delta(1-\alpha)}}. \end{aligned} $$
    (7.48)

    In order to reduce the number of feasible scenarios for the evolution of the economy we suppose that \(\bar {A}>\tilde {A}\). This is true if the following sufficient condition holds:

    $$\displaystyle \begin{aligned} \tau<\tau^{MAX}=\bar{p}^{1/\epsilon}\frac{\delta z(1-\delta)^{1/(E-1)}}{\lambda}. \end{aligned} $$
    (7.49)

    Thus in the range \(\hat {y}\leq y_t\leq \bar {y}\), if \(A>\bar {A}\) there is no steady state; if \(\tilde {A}<A<\bar {A}\) there is one stable equilibrium and finally when \(A<\tilde {A}<\bar {A}\) there are two steady states if:

    $$\displaystyle \begin{aligned} T[z(1-\alpha)y_t-1]=y_t^{E}, \end{aligned} $$
    (7.50)

    where \(T=(A \Delta x^{\alpha })^{\frac {1}{\alpha +\delta (1-\alpha )}}\). Note that in all other cases there is no steady state. Both the LHS and RHS of (7.50) increase with respect yt, in particular:

    $$\displaystyle \begin{aligned} \begin{aligned} \frac{\partial LHS(y_t)}{\partial y_t}>0; \\ \frac{\partial^2 LHS(y_t)}{\partial y^2_t}=0 \\ \lim \limits_{y \rightarrow 0}LHS(y_t)=-T \\ \frac{\partial RHS(y_t)}{\partial y_t}>0; \\ \lim\limits_{y_t \rightarrow 0}RHS(y_t)=0; \end{aligned} \end{aligned} $$
    (7.51)

    It easy to note that the sign of \(\partial ^2 RHS(y_t)/\partial y^2_t\) can be either negative if E < 1 or positive if E > 1.

    However, as specified above in Eq. (7.44) we assume E > 1. In this case, therefore, Eq. (7.50) can show no or two steady states. In particular by defining the maximum point of the function LHS(yt) − RHS(yt) as yMAX there are two steady states if:

    $$\displaystyle \begin{aligned} \left. LHS(y_t)-RHS(y_t) \right\vert {}_{y_{t}=y^{MAX}}>0, \end{aligned} $$
    (7.52)

    and:

    $$\displaystyle \begin{aligned} y^{MAX}>\hat{y}. \end{aligned} $$
    (7.53)

    The maximum point of LHS(yt) − RHS(yt) > 0 is:

    $$\displaystyle \begin{aligned} y^{MAX}=\left[\frac{Tz(1-\alpha)}{E}\right]^{\frac{1}{E-1}} \end{aligned} $$
    (7.54)

    Some calculations show that (7.52) holds if \(A>\hat {A}\) where:

    $$\displaystyle \begin{aligned} \hat{A}=\left[\left(\frac{E}{z(1-\alpha)}\right)^E\left(\frac{1}{E-1}\right)^{E-1}\right]^{\alpha+\delta(1-\alpha)}\frac{1}{\Delta x^{\alpha}}, \end{aligned} $$
    (7.55)

    and \(y^{MAX}>\hat {y}\) if A > A2 where:

    $$\displaystyle \begin{aligned} A_2=\left[\left(\frac{1}{\delta z(1-\alpha)}\right)^{E-1}\left(\frac{E}{z(1-\alpha)}\right)\right]^{\alpha+\delta(1-\alpha)}\frac{1}{\Delta x^{\alpha}} \end{aligned} $$
    (7.56)

    In summary, assuming that the parameters’ condition in Eq. (7.44) holds, then when \(\hat {y}<y_t<\bar {y}\) the economy shows two steady states if \(A>{max}\{\hat {A},A_2\}\).

    From Eqs. (7.46), (7.55) and (7.56) we get that \(\hat {A}>A_2\) and \(\tilde {A}>A_2\) if:

    $$\displaystyle \begin{aligned} E<\frac{1}{1-\delta} \Rightarrow \epsilon>\frac{(1-\alpha)(1-\delta)-\delta}{(1-\delta)\alpha} \end{aligned} $$
    (7.57)

    We assume that \(\tilde {A}>\hat {A}\), that is:

    $$\displaystyle \begin{aligned} \left(\frac{E-1}{\delta E}\right)^{E}>\frac{(1-\delta)(E-1)}{\delta}. \end{aligned} $$
    (7.58)
  • When \(y_t \geq \bar {y}\) there is one stable equilibrium if \(A>\bar {A}\). If \(A<\bar {A}\) there are no or two steady states.

Appendix 2: Policy Effect

1.1 Income

From Eq. (7.26) we can observe that \(\partial \bar {y}/\partial {\tau }<0\) and thus through this channel positively affects the evolution of income. From Eq. (7.28), in the range \(0\leq y_t\leq \bar {y}\), ∂yt+1∂τ > 0 if ( Ψxα)∕∂τ > 0 and ( Δxα)∕∂τ > 0. In particular, given η = α + τ(1 − λ)(1 − α) and x = [λτ(1 − α)]𝜖, from Eqs. (7.23) and (7.24) both ( Ψxα)∕∂τ > 0 and ( Δxα)∕∂τ > 0 if (τ𝜖η)∕∂τ > 0 which holds if:

$$\displaystyle \begin{aligned} \tau<\hat{\tau}=\frac{\alpha\epsilon}{(1-\alpha)(1-\lambda)(1-\epsilon)}. \end{aligned} $$
(7.59)

Thus, ∂yt+1∂yt > 0 if \(\tau <\hat {\tau }\) and ∂yt+1∂yt < 0if \(\tau >\hat {\tau }\). This implies that both ∂yL∂τ > 0 and ∂yI∂τ > 0 if \(\tau <\hat {\tau }\). See also Eq. (7.32) to back this result with respect to the equilibrium yL. When \( y_t\geq \bar {y}\) yt+1 is always decreasing in τ.

With regard to the impact of the wage income tax on \(\hat {A}\) and \(\tilde {A}\) from Eqs. (7.29) and (7.30) we can observe that both \(\partial \hat {A}/\partial \tau >0\) and \(\partial \tilde {A}/\partial \tau >0\) if \(\tau >\hat {\tau }\). From Eq. (7.31) we see that the impact of a higher wage income tax on \(\bar {A}\) is ambiguous. However, with our set of parameters, the relationship between \(\bar {A}\) and τ is always negative in the range 0 < τ ≤ τMAX.

1.2 Fertility

With respect to the impact of a higher wage income tax on fertility from Eq. (7.20) we derive that ∂nt∂τ < 0 if:

$$\displaystyle \begin{aligned} -(1+\gamma)-\alpha\beta \frac{p(y_t)}{\eta}\left[1+(1-\tau)\frac{\partial(p(y_t)/\eta)/\partial \tau}{p(y_t)/\eta}\right]<0. \end{aligned} $$
(7.60)

From Eq. (7.25), note that when \(y_t>\bar {y}\), this is always satisfied because (p(yt)∕η)∕∂τ = 0.

When \(y_t<\bar {y}\) the term inside the brackets is given by:

$$\displaystyle \begin{aligned} 1+(1-\tau)\frac{[\alpha \epsilon-(1-\lambda)(1-\alpha)(1-\epsilon)\tau]}{\tau[\alpha+\tau(1-\lambda)(1-\alpha)]} \end{aligned} $$
(7.61)

which is positive since

$$\displaystyle \begin{aligned} \tau^2(1-\lambda)(1-\alpha)(2-\epsilon)+\tau(1-\epsilon)[\alpha-(1-\lambda)(1-\alpha)]+\alpha\epsilon>0\quad \end{aligned} $$
(7.62)

if the sufficient condition λ > (1 − 2α)∕(1 − α) holds. Thus under this parametric restriction, we can conclude that, a higher wage income tax always decreases fertility.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cipriani, G.P., Fioroni, T. (2019). Health Spending, Education and Endogenous Demographics in an OLG Model. In: Bucci, A., Prettner, K., Prskawetz, A. (eds) Human Capital and Economic Growth. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-21599-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21599-6_7

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-21598-9

  • Online ISBN: 978-3-030-21599-6

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics