Skip to main content

Recent Advances in Nanodentistry

  • Chapter
  • First Online:
Applications of Biomedical Engineering in Dentistry

Abstract

Nanodentistry includes sophisticated nanotechnology-based methods in oral health by means of diagnostic and therapeutic tactics. Currently, numerous researches have been conducted to create a new generation of advanced clinical tools for efficient oral healthcare using biocompatible nanostructures. This chapter is devoted to introducing the utilized nanostructures, with their various applications in dentistry, as a novel paradigm for circumventing the existing problems of traditional dentistry. In this chapter, after presenting the various approaches of nanodentistry, prevalent types of utilized nano-/biomaterials in dentistry, along with their specific clinical applications, are discussed, followed by the future perspective of this emerging field. Employment of nanotechnology in dentistry has grown progressively during recent years; however, it is important to consider the biosafety assessment of nanostructures prior to their use, in order to avoid possible dental pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris, D., & Robinson, J. R. (1992). Drug delivery via the mucous membranes of the oral cavity. Journal of Pharmaceutical Sciences, 81(1), 1–10.

    Article  Google Scholar 

  2. World Health Organization. (2013). Oral health surveys: Basic methods. World Health Organization. School of Dentistry, University of São Paulo, Brazil

    Google Scholar 

  3. Ensign, L. M., Cone, R., & Hanes, J. (2012). Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews, 64(6), 557–570.

    Article  Google Scholar 

  4. Langer, R. (1998). Drug delivery and targeting. Nature-London, 392, 5–10.

    Google Scholar 

  5. Langer, R., & Peppas, N. A. (2003). Advances in biomaterials, drug delivery, and bionanotechnology. AICHE Journal, 49(12), 2990–3006.

    Article  Google Scholar 

  6. Goldberg, M., & Gomez-Orellana, I. (2003). Challenges for the oral delivery of macromolecules. Nature Reviews Drug Discovery, 2(4), 289.

    Article  Google Scholar 

  7. Scott, J. H., & Symons, N. B. B. (1982). Introduction to dental anatomy (Vol. 6). Edinburgh: Churchill Livingstone.

    Google Scholar 

  8. Petersen, P. E., et al. (2005). The global burden of oral diseases and risks to oral health. Bulletin of the World Health Organization, 83, 661–669.

    Google Scholar 

  9. Magalhães, A. C., et al. (2009). Insights into preventive measures for dental erosion. Journal of Applied Oral Science, 17(2), 75–86.

    Article  Google Scholar 

  10. Friedman, S. (2002). Prognosis of initial endodontic therapy. Endodontic Topics, 2(1), 59–88.

    Article  Google Scholar 

  11. Gomes, B. P., et al. (2004). Microbiological examination of infected dental root canals. Oral Microbiology and Immunology, 19(2), 71–76.

    Article  MathSciNet  Google Scholar 

  12. Pavarina, A. C., et al. (2003). An infection control protocol: Effectiveness of immersion solutions to reduce the microbial growth on dental prostheses. Journal of Oral Rehabilitation, 30(5), 532–536.

    Article  Google Scholar 

  13. Ficai, D., et al. (2017). Drug delivery systems for dental applications. Current Organic Chemistry, 21(1), 64–73.

    Article  Google Scholar 

  14. Nikalje, A. P. (2015). Nanotechnology and its applications in medicine. Medicinal Chemistry, 5(2), 081–089.

    Article  Google Scholar 

  15. WHO. (2012). World Health Organization: Oral health fact sheet N° 318. WHO Media Centre. Malmö University, Sweden

    Google Scholar 

  16. Freitas, R. A., Jr. (2000). Nanodentistry. The Journal of the American Dental Association, 131(11), 1559–1565.

    Article  Google Scholar 

  17. Kumar, P. S., et al. (2011). Nanodentistry: A paradigm shift-from fiction to reality. The Journal of Indian Prosthodontic Society, 11(1), 1–6.

    Article  Google Scholar 

  18. Chandki, R., et al. (2012). ‘Nanodentistry’: Exploring the beauty of miniature. Journal of Clinical and Experimental Dentistry, 4(2), e119.

    Article  Google Scholar 

  19. Ingle, E., & Gopal, K. S. (2011). Nanodentistry: A hype or hope. Dentist, 3, 7.

    Google Scholar 

  20. Hatziantoniou, S., & Demetzos, C. (2006). An introduction to nanotechnology in health care. Pharmakeftiki, 19(IV), 86–88.

    Google Scholar 

  21. Mitsiadis, T. A., Woloszyk, A., & Jiménez-Rojo, L. (2012). Nanodentistry: Combining nanostructured materials and stem cells for dental tissue regeneration. Nanomedicine, 7(11), 1743–1753.

    Article  Google Scholar 

  22. Viswanathan, P., Muralidaran, Y., & Ragavan, G. (2017). Challenges in oral drug delivery: A nano-based strategy to overcome. In Nanostructures for oral medicine (pp. 173–201). Amsterdam: Elsevier.

    Google Scholar 

  23. Cavalcanti, A., et al. (2007). Nanorobot architecture for medical target identification. Nanotechnology, 19(1), 015103.

    Article  Google Scholar 

  24. Sankar, V., et al. (2011). Local drug delivery for oral mucosal diseases: Challenges and opportunities. Oral Diseases, 17, 73–84.

    Article  Google Scholar 

  25. Kasraei, S., et al. (2014). Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restorative Dentistry & Endodontics, 39(2), 109–114.

    Article  Google Scholar 

  26. Khan, A., et al. (2014). Gold nanoparticles: Synthesis and applications in drug delivery. Tropical Journal of Pharmaceutical Research, 13(7), 1169–1177.

    Article  Google Scholar 

  27. Mu, L., & Feng, S. (2003). A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. Journal of Controlled Release, 86(1), 33–48.

    Article  Google Scholar 

  28. Munot, N. M., & Gujar, K. N. (2013). Orodental delivery systems: An overview. International Journal of Pharmacy and Pharmaceutical Sciences, 5(3), 74–83.

    Google Scholar 

  29. He, Z., & Alexandridis, P. (2017). Ionic liquid and nanoparticle hybrid systems: Emerging applications. Advances in Colloid and Interface Science, 244, 54–70.

    Article  Google Scholar 

  30. Sung, J. (2009). Diamond nanotechnology: Synthesis and applications. Singapure: Pan Stanford.

    Google Scholar 

  31. Nakatuka, T., et al. (2003). Dental fillers. Google Patents. US6620861B1, United States

    Google Scholar 

  32. Raemdonck, K., Demeester, J., & De Smedt, S. (2009). Advanced nanogel engineering for drug delivery. Soft Matter, 5(4), 707–715.

    Article  Google Scholar 

  33. Maleki, A., et al. (2018). Effect of nano-fillers on mechanical properties of dental PMMA based composites. Journal of Advanced Chemical and Pharmaceutical Materials (JACPM), 1(3), 73–76.

    Google Scholar 

  34. Sadat-Shojai, M., et al. (2010). Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dental Materials, 26(5), 471–482.

    Article  Google Scholar 

  35. Klapdohr, S., & Moszner, N. (2005). New inorganic components for dental filling composites. Monatshefte für Chemie/Chemical Monthly, 136(1), 21–45.

    Article  Google Scholar 

  36. Hannig, M., & Hannig, C. (2010). Nanomaterials in preventive dentistry. Nature Nanotechnology, 5(8), 565.

    Article  Google Scholar 

  37. Bogunia-Kubik, K., & Sugisaka, M. (2002). From molecular biology to nanotechnology and nanomedicine. Biosystems, 65(2–3), 123–138.

    Article  Google Scholar 

  38. Wang, Y., et al. (2013). Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small, 9(9–10), 1742–1752.

    Article  Google Scholar 

  39. Baloš, S., et al. (2013). Improving mechanical properties of flowable dental composite resin by adding silica nanoparticles. Vojnosanitetski Pregled, 70(5), 477–483.

    Article  Google Scholar 

  40. Xu, H., et al. (2010). Strong nanocomposites with Ca, PO4, and F release for caries inhibition. Journal of Dental Research, 89(1), 19–28.

    Article  Google Scholar 

  41. Xia, Y., et al. (2008). Nanoparticle-reinforced resin-based dental composites. Journal of Dentistry, 36(6), 450–455.

    Article  Google Scholar 

  42. Wagner, A., et al. (2013). Biomimetically-and hydrothermally-grown HAp nanoparticles as reinforcing fillers for dental adhesives. Journal of Adhesive Dentistry, 15(5), 413–422.

    Google Scholar 

  43. Melo, M. A. S., et al. (2013). Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dental Materials, 29(2), 199–210.

    Article  Google Scholar 

  44. Wang, W., et al. (2014). Structure–property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes. International Journal of Nanomedicine, 9, 841.

    Article  Google Scholar 

  45. Habekost, L. V., et al. (2012). Nanoparticle loading level and properties of experimental hybrid resin luting agents. Journal of Prosthodontics, 21(7), 540–545.

    Article  Google Scholar 

  46. Jallot, E., et al. (2005). STEM and EDXS characterisation of physico-chemical reactions at the periphery of sol–gel derived Zn-substituted hydroxyapatites during interactions with biological fluids. Colloids and Surfaces B: Biointerfaces, 42(3–4), 205–210.

    Article  Google Scholar 

  47. Krisanapiboon, A., Buranapanitkit, B., & Oungbho, K. (2006). Biocompatability of hydroxyapatite composite as a local drug delivery system. Journal of Orthopaedic Surgery, 14(3), 315–318.

    Article  Google Scholar 

  48. Huber, F.-X., et al. (2006). First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM® in human cancellous bone. BMC Musculoskeletal Disorders, 7(1), 50.

    Article  Google Scholar 

  49. Qi, X., et al. (2013). Development and characterization of an injectable cement of nanocalcium-deficienthydroxyapatite/multi (amino acid) copolymer/calcium sulfate hemihydrate for bone repair. International Journal of Nanomedicine, 8, 4441.

    Article  Google Scholar 

  50. Yang, C., et al. (2013). Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs. Journal of Periodontal & Implant Science, 43(6), 315–322.

    Article  Google Scholar 

  51. An, S.-H., et al. (2012). Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. Dental Materials, 28(12), 1221–1231.

    Article  Google Scholar 

  52. De Aza, A., et al. (2002). Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials, 23(3), 937–945.

    Article  Google Scholar 

  53. Uno, M., et al. (2013). Effects of adding silver nanoparticles on the toughening of dental porcelain. The Journal of Prosthetic Dentistry, 109(4), 241–247.

    Article  Google Scholar 

  54. Han, Y., et al. (2008). Effect of nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer. The Journal of Prosthetic Dentistry, 100(6), 465–473.

    Article  Google Scholar 

  55. Acosta-Torres, L. S., et al. (2012). Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. International Journal of Nanomedicine, 7, 4777.

    Google Scholar 

  56. Karlsson, M., et al. (2003). Initial in vitro interaction of osteoblasts with nano-porous alumina. Biomaterials, 24(18), 3039–3046.

    Article  Google Scholar 

  57. Pardun, K., et al. (2015). Characterization of wet powder-sprayed zirconia/calcium phosphate coating for dental implants. Clinical Implant Dentistry and Related Research, 17(1), 186–198.

    Article  Google Scholar 

  58. Memarzadeh, K., et al. (2015). Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. Journal of Biomedical Materials Research Part A, 103(3), 981–989.

    Article  Google Scholar 

  59. Uezono, M., et al. (2013). Hydroxyapatite/collagen nanocomposite-coated titanium rod for achieving rapid osseointegration onto bone surface. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101(6), 1031–1038.

    Article  Google Scholar 

  60. Lebold, T., et al. (2009). Nanostructured silica materials as drug-delivery systems for doxorubicin: Single molecule and cellular studies. Nano Letters, 9(8), 2877–2883.

    Article  Google Scholar 

  61. Melancon, M. P., et al. (2011). Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 32(30), 7600–7608.

    Article  Google Scholar 

  62. Patil, J. (2016). Encapsulation technology: Opportunity to develop novel drug delivery systems. Journal of Pharmacovigilance, 4, e156.

    Google Scholar 

  63. Maysinger, D. (2007). Nanoparticles and cells: Good companions and doomed partnerships. Organic & Biomolecular Chemistry, 5(15), 2335–2342.

    Article  Google Scholar 

  64. Fahmy, T. M., et al. (2005). Targeted for drug delivery. Materials Today, 8(8), 18–26.

    Article  Google Scholar 

  65. Reddy, R. S., & Dathar, S. (2015). Nano drug delivery in oral cancer therapy: An emerging avenue to unveil. Journal of Medicine, Radiology, Pathology and Surgery, 1, 17–22.

    Article  Google Scholar 

  66. Krishna, K., Reddy, C., & Srikanth, S. (2013). A review on microsphere for novel drug delivery system. International Journal of Research in Pharmacy and Chemistry, 3(4), 763–767.

    Google Scholar 

  67. Nasongkla, N., et al. (2006). Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Letters, 6(11), 2427–2430.

    Article  Google Scholar 

  68. Hu, C.-M. J., Aryal, S., & Zhang, L. (2010). Nanoparticle-assisted combination therapies for effective cancer treatment. Therapeutic Delivery, 1(2), 323–334.

    Article  Google Scholar 

  69. Majoros, I. J., et al. (2006). PAMAM dendrimer-based multifunctional conjugate for cancer therapy: Synthesis, characterization, and functionality. Biomacromolecules, 7(2), 572–579.

    Article  Google Scholar 

  70. Jain, N., et al. (2010). Nanotechnology: A safe and effective drug delivery system. Asian Journal of Pharmaceutical and Clinical Research, 3(3), 159–165.

    Google Scholar 

  71. Tang, M., et al. (2010). Recent progress in nanotechnology for cancer therapy. Chinese Journal of Cancer, 29(9), 775–780.

    Article  Google Scholar 

  72. Barakat, N. S., BinTaleb, D., & Al Salehi, A. (2012). Target nanoparticles: An appealing drug delivery platform. Journal of Nanomedicine & Nanotechnology, 3(3), 1–9.

    Google Scholar 

  73. Bae, Y. H., & Park, K. (2011). Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release, 153(3), 198.

    Article  Google Scholar 

  74. Chen, P. C., Mwakwari, S. C., & Oyelere, A. K. (2008). Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnology, Science and Applications, 1, 45.

    Article  Google Scholar 

  75. El-Say, K. M. (2011). Nanodiamond as a drug delivery system: Applications and prospective. Journal of Applied Pharmaceutical Science, 1(06), 29–39.

    Google Scholar 

  76. Tang, L., et al. (1995). Biocompatibility of chemical-vapour-deposited diamond. Biomaterials, 16(6), 483–488.

    Article  Google Scholar 

  77. Saba, N., Tahir, P., & Jawaid, M. (2014). A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers, 6(8), 2247–2273.

    Article  Google Scholar 

  78. Atai, M., et al. (2009). PMMA-grafted nanoclay as novel filler for dental adhesives. Dental Materials, 25(3), 339–347.

    Article  Google Scholar 

  79. Khurshid, Z., et al. (2015). Advances in nanotechnology for restorative dentistry. Materials, 8(2), 717–731.

    Article  Google Scholar 

  80. Ruyter, I. (1992). The chemistry of adhesive agents. Operative Dentistry, Suppl 5, 32–43.

    Google Scholar 

  81. Breschi, L., et al. (2008). Dental adhesion review: Aging and stability of the bonded interface. Dental Materials, 24(1), 90–101.

    Article  Google Scholar 

  82. Moszner, N., Salz, U., & Zimmermann, J. (2005). Chemical aspects of self-etching enamel–dentin adhesives: A systematic review. Dental Materials, 21(10), 895–910.

    Article  Google Scholar 

  83. Cheng, Y. J., et al. (2011). In situ formation of silver nanoparticles in photocrosslinking polymers. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 97(1), 124–131.

    Article  Google Scholar 

  84. Melo, M. A. S., et al. (2013). Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101(4), 620–629.

    Article  Google Scholar 

  85. Skrtic, D., et al. (2000). Physicochemical evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates. Journal of Biomedical Materials Research, 53(4), 381–391.

    Article  Google Scholar 

  86. Parr, G. R., Gardner, L. K., & Toth, R. W. (1985). Titanium: The mystery metal of implant dentistry. Dental materials aspects. Journal of Prosthetic Dentistry, 54(3), 410–414.

    Article  Google Scholar 

  87. Avila, G., et al. (2009). Implant surface treatment using biomimetic agents. Implant Dentistry, 18(1), 17–26.

    Article  Google Scholar 

  88. Mombelli, A., & Lang, N. (1992). Antimicrobial treatment of peri-implant infections. Clinical Oral Implants Research, 3(4), 162–168.

    Article  Google Scholar 

  89. Anusavice, K. J., Shen, C., & Rawls, H. R. (2013). Phillips’ science of dental materials. London: Elsevier Health Sciences.

    Google Scholar 

  90. Willmann, G. (1999). Coating of implants with hydroxyapatite–material connections between bone and metal. Advanced Engineering Materials, 1(2), 95–105.

    Article  Google Scholar 

  91. Catledge, S. A., et al. (2002). Nanostructured ceramics for biomedical implants. Journal of Nanoscience and Nanotechnology, 2(3–4), 293–312.

    Article  Google Scholar 

  92. Davies, J. E. (2003). Understanding peri-implant endosseous healing. Journal of Dental Education, 67(8), 932–949.

    Google Scholar 

  93. Duraccio, D., Mussano, F., & Faga, M. G. (2015). Biomaterials for dental implants: Current and future trends. Journal of Materials Science, 50(14), 4779–4812.

    Article  Google Scholar 

  94. Pachauri, P., Bathala, L. R., & Sangur, R. (2014). Techniques for dental implant nanosurface modifications. The Journal of Advanced Prosthodontics, 6(6), 498–504.

    Article  Google Scholar 

  95. Gümüşderelioğlu, M., et al. (2007). Doku mühendisliğinde nanoteknoloji. Bilim ve Teknik Dergisi Yeni Ufuklara Eki.

    Google Scholar 

  96. Tetè, S., et al. (2008). A macro-and nanostructure evaluation of a novel dental implant. Implant Dentistry, 17(3), 309–320.

    Article  Google Scholar 

  97. Braceras, I., et al. (2009). In vivo low-density bone apposition on different implant surface materials. International Journal of Oral and Maxillofacial Surgery, 38(3), 274–278.

    Article  Google Scholar 

  98. Ellingsen, J. E., Thomsen, P., & Lyngstadaas, S. P. (2006). Advances in dental implant materials and tissue regeneration. Periodontology 2000, 41(1), 136–156.

    Article  Google Scholar 

  99. Suh, J. Y., et al. (2007). Effects of a novel calcium titanate coating on the osseointegration of blasted endosseous implants in rabbit tibiae. Clinical Oral Implants Research, 18(3), 362–369.

    Article  Google Scholar 

  100. Meirelles, L., et al. (2008). The effect of chemical and nanotopographical modifications on the early stages of osseointegration. International Journal of Oral & Maxillofacial Implants, 23(4), 641–647.

    Google Scholar 

  101. Chiang, C.-Y., et al. (2009). Formation of TiO2nano-networkon titanium surface increases the human cell growth. Dental Materials, 25(8), 1022–1029.

    Article  Google Scholar 

  102. Paul, W., & Sharma, C. P. (2006). Nanoceramic matrices: Biomedical applications. American Journal of Biochemistry and Biotechnology, 2(2), 41–48.

    Article  Google Scholar 

  103. Zhang, L., & Webster, T. J. (2009). Nanotechnology and nanomaterials: Promisesfor improved tissue regeneration. Nano Today, 4(1), 66–80.

    Article  Google Scholar 

  104. Colon, G., Ward, B. C., & Webster, T. J. (2006). Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. Journal of Biomedical Materials Research Part A, 78(3), 595–604.

    Article  Google Scholar 

  105. Webster, T. J., & Ejiofor, J. U. (2004). Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 25(19), 4731–4739.

    Article  Google Scholar 

  106. Pauwels, E. K., et al. (2008). Nanoparticles in cancer. Current Radiopharmaceuticals, 1(1), 30–36.

    Article  Google Scholar 

  107. Sivaramakrishnan, S., & Neelakantan, P. (2014). Nanotechnology in dentistry-what does the future hold in store? Dentistry, 4(2), 1.

    Google Scholar 

  108. Salerno, M., & Diaspro, A. (2015). Dentistry on the bridge to nanoscience and nanotechnology. Frontiers in Materials, 2, 19.

    Article  Google Scholar 

  109. Nguyen, S., et al. (2010). The influence of liposomal formulation factors on the interactions between liposomes and hydroxyapatite. Colloids and Surfaces B: Biointerfaces, 76(1), 354–361.

    Article  Google Scholar 

  110. Li, Y., et al. (2005). The oral fluid MEMS/NEMS chip (OFMNC): Diagnostic & translational applications. Advances in Dental Research, 18(1), 3–5.

    Article  Google Scholar 

  111. Christodoulides, N., et al. (2007). Lab-on-a-chip methods for point-of-care measurements of salivary biomarkers of periodontitis. Annals of the New York Academy of Sciences, 1098(1), 411–428.

    Article  Google Scholar 

  112. Meagher, R. J., et al. (2008). An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab on a Chip, 8(12), 2046–2053.

    Article  Google Scholar 

  113. Song, J. M., et al. (2004). Detection of cytochrome C in a single cell using an optical nanobiosensor. Analytical Chemistry, 76(9), 2591–2594.

    Article  Google Scholar 

  114. Kumar, S. R., & Vijayalakshmi, R. (2006). Nanotechnology in dentistry. Indian Journal of Dental Research, 17(2), 62–65.

    Article  Google Scholar 

  115. Gau, V., & Wong, D. (2007). Oral fluid nanosensor test (OFNASET) with advanced electrochemical-based molecular analysis platform. Annals of the New York Academy of Sciences, 1098(1), 401–410.

    Article  Google Scholar 

  116. Somerman, M., et al. (1999). Evolution of periodontal regeneration: From the roots’ point of view. Journal of Periodontal Research, 34(7), 420–442.

    Article  Google Scholar 

  117. Shellhart, W. C., & Oesterle, L. J. (1999). Uprighting molars without extrusion. Journal of the American Dental Association (1939), 130(3), 381–385.

    Article  Google Scholar 

  118. Scott, N. (2007). Nanoscience in veterinary medicine. Veterinary Research Communications, 31(1), 139–144.

    Article  Google Scholar 

  119. Jhaveri, H., & Balaji, P. (2005). Nanotechnology: The future of dentistry. Journal of Indian Prosthodontic Society, 5(1), 15–17.

    Article  Google Scholar 

  120. Labhasetwar, V., & Leslie-Pelecky, D. L. (2007). Biomedical applications of nanotechnology. Hoboken: John Wiley & Sons.

    Book  Google Scholar 

  121. Gaur, A., Midha, A., & Bhatia, A. L. (2014). Significance of nanotechnology in medical sciences. Asian Journal of Pharmaceutics (AJP), 2(2).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samira Jafari or Lobat Tayebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Izadi, Z., Derakhshankhah, H., Alaei, L., Karkazis, E., Jafari, S., Tayebi, L. (2020). Recent Advances in Nanodentistry. In: Tayebi, L. (eds) Applications of Biomedical Engineering in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-21583-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21583-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21582-8

  • Online ISBN: 978-3-030-21583-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics