Skip to main content

Challenges in the Rehabilitation Handling of Large and Localized Oral and Maxillofacial Defects

  • Chapter
  • First Online:
Applications of Biomedical Engineering in Dentistry

Abstract

Reconstruction of oral and maxillofacial bony defects has always posed challenging issue for maxillofacial surgeons, periodontists, and scientists. The main purpose of oral and maxillofacial reconstruction is to rehabilitate form, function, articulation, and occlusion. These bony defects can be caused by acquired trauma, pathological condition, or congenital disorder. They may cause social incapacitation and debilitating functions. Oral and maxillofacial bony defects are classified by various factors such as size, continuity, and type. During the past decades, there has been a significant amount of innovative protocols and strategies in order to treat patients and reconstruct the defects. In this chapter, we will highlight challenges in reconstruction of oral and maxillofacial bone defects and bone tissue engineering’s various innovative approaches applied in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singaram, M., & Udhayakumar, R. K. (2016). Prevalence, pattern, etiology, and management of maxillofacial trauma in a developing country: A retrospective study. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 42(4), 174–181.

    Article  Google Scholar 

  2. Oh, J.-h. (2018). Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing. Maxillofacial Plastic and Reconstructive Surgery, 40(1), 2.

    Article  Google Scholar 

  3. Schmitz, J. P., & Hollinger, J. O. (1986). The critical size defect as an experimental model for craniomandibulofacial nonunions. Clinical Orthopaedics and Related Research, 205, 299–308.

    Google Scholar 

  4. Hollinger, J. O., & Kleinschmidt, J. C. (1990). The critical size defect as an experimental model to test bone repair materials. The Journal of Craniofacial Surgery, 1(1), 60–68.

    Article  Google Scholar 

  5. Hosseinpour, S., & Bastami, F. (2017). Critical-sized bone defects in mandible of canine model. Tissue Engineering Part A, 23(9–10), 470–470.

    Article  Google Scholar 

  6. Carvalho, P. P., et al. (2014). Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch–polycaprolactone scaffolds enhance bone regeneration: Nude mice calvarial defect in vivo study. Journal of Biomedical Materials Research Part A, 102(9), 3102–3111.

    Article  Google Scholar 

  7. Lam, C. X., et al. (2009). Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. Journal of Biomedical Materials Research Part A, 90(3), 906–919.

    Article  Google Scholar 

  8. Li, L., et al. (2015). Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials, 37, 218–229.

    Article  Google Scholar 

  9. Haberstroh, K., et al. (2010). Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 520–530.

    Article  Google Scholar 

  10. Hren, N. I., & Miljavec, M. (2008). Spontaneous bone healing of the large bone defects in the mandible. International Journal of Oral and Maxillofacial Surgery, 37(12), 1111–1116.

    Article  Google Scholar 

  11. Uygur, S., et al. (2013). Management of cranial bone defects: A reconstructive algorithm according to defect size. Journal of Craniofacial Surgery, 24(5), 1606–1609.

    Article  Google Scholar 

  12. Brown, J. S., & Shaw, R. J. (2010). Reconstruction of the maxilla and midface: Introducing a new classification. The Lancet Oncology, 11(10), 1001–1008.

    Article  Google Scholar 

  13. Brown, J. S., et al. (2016). A new classification for mandibular defects after oncological resection. The Lancet Oncology, 17(1), e23–e30.

    Article  Google Scholar 

  14. Adamo, A. K., & Szal, R. L. (1979). Timing, results, and complications of mandibular reconstructive surgery: Report of 32 cases. Journal of Oral Surgery, 37(10), 755–763.

    Google Scholar 

  15. Tidstrom, K. D., & Keller, E. E. (1990). Reconstruction of mandibular discontinuity with autogenous iliac bone graft: Report of 34 consecutive patients. Journal of Oral and Maxillofacial Surgery, 48(4), 336–346. discussion 347.

    Article  Google Scholar 

  16. August, M., et al. (2000). Factors influencing the long-term outcome of mandibular reconstruction. Journal of Oral and Maxillofacial Surgery, 58(7), 731–737; discussion 738.

    Article  Google Scholar 

  17. Pogrel, M. A., et al. (1997). A comparison of vascularized and nonvascularized bone grafts for reconstruction of mandibular continuity defects. Journal of Oral and Maxillofacial Surgery, 55(11), 1200–1206.

    Article  Google Scholar 

  18. Chiapasco, M., et al. (2008). Long-term results of mandibular reconstruction with autogenous bone grafts and oral implants after tumor resection. Clinical Oral Implants Research, 19(10), 1074–1080.

    Article  Google Scholar 

  19. Obiechina, A. E., et al. (2003). Mandibular segmental reconstruction with iliac crest. West African Journal of Medicine, 22(1), 46–49.

    Google Scholar 

  20. Hayden, R. E., Mullin, D. P., & Patel, A. K. (2012). Reconstruction of the segmental mandibular defect: Current state of the art. Current Opinion in Otolaryngology & Head and Neck Surgery, 20(4), 231–236.

    Article  Google Scholar 

  21. Sajid, M. A., et al. (2011). Reconstruction of mandibular defects with autogenous bone grafts: A review of 30 cases. Journal of Ayub Medical College, Abbottabad, 23(3), 82–85.

    Google Scholar 

  22. Ardary, W. C. (1993). Reconstruction of mandibular discontinuity defects using autogenous grafting and a mandibular reconstruction plate: A prospective evaluation of nine consecutive cases. Journal of Oral and Maxillofacial Surgery, 51(2), 125–130; discussion 131-2.

    Article  Google Scholar 

  23. Cawood, J., & Howell, R. (1988). A classification of the edentulous jaws. International Journal of Oral and Maxillofacial Surgery, 17(4), 232–236.

    Article  Google Scholar 

  24. Seibert, J. (1983). Reconstruction of deformed, partially edentulous ridges, using full thickness onlay grafts, Part I. Technique and wound healing. The Compendium of Continuing Education in Dentistry, 4(5), 437–453.

    Google Scholar 

  25. Tinti, C., Parma-Benfenati, S., & Polizzi, G. (1996). Vertical ridge augmentation: What is the limit? International Journal of Periodontics & Restorative Dentistry, 16(3).

    Google Scholar 

  26. Khojasteh, A., Morad, G., & Behnia, H. (2013). Clinical importance of recipient site characteristics for vertical ridge augmentation: A systematic review of literature and proposal of a classification. Journal of Oral Implantology, 39(3), 386–398.

    Article  Google Scholar 

  27. Khojasteh, A., Nazeman, P., & Tolstunov, L. (2016). Tuberosity-alveolar block as a donor site for localised augmentation of the maxilla: A retrospective clinical study. British Journal of Oral and Maxillofacial Surgery, 54(8), 950–955.

    Article  Google Scholar 

  28. Singh, S., Panwar, M., & Arora, V. (2013). Management of mucosal fenestration by multidisciplinary approach: A rare case report. Medical Journal, Armed Forces India, 69(1), 86.

    Article  Google Scholar 

  29. Davies, R., et al. (1974). Alveolar defects in human skulls. Journal of Clinical Periodontology, 1(2), 107–111.

    Article  Google Scholar 

  30. Nimigean, V. R., et al. (2009). Alveolar bone dehiscences and fenestrations: An anatomical study and review. Romanian Journal of Morphology and Embryology, 50(3), 391–397.

    Google Scholar 

  31. Rupprecht, R. D., et al. (2001). Prevalence of dehiscences and fenestrations in modern American skulls. Journal of Periodontology, 72(6), 722–729.

    Article  Google Scholar 

  32. Whitaker, L. A., Pashayan, H., & Reichman, J. (1981). A proposed new classification of craniofacial anomalies. The Cleft Palate Journal, 18(3), 161–176.

    Google Scholar 

  33. Kernahan, D. A., & Stark, R. B. (1958). A new classification for cleft lip and cleft palate. Plastic and Reconstructive Surgery, 22(5), 435–441.

    Article  Google Scholar 

  34. Harkins, C. S., et al. (1962). A classification of clfft lip and cleft palatf. Plastic and Reconstructive Surgery, 29(1), 31–39.

    Article  Google Scholar 

  35. Kernahan, D. A. (1971). The striped Y—A symbolic classification for cleft lip and palate. Plastic and Reconstructive Surgery, 47(5), 469–470.

    Article  Google Scholar 

  36. Elsahy, N. (1973). The modified striped Y--a systematic classification for cleft lip and palate. The Cleft Palate Journal, 10, 247–250.

    Google Scholar 

  37. Millard, D. (1976). The naming and classifying of clefts. In Cleft craft: The evolution of its surgery (pp. 41–55). Boston: Little, Brown.

    Google Scholar 

  38. Waite, P. D., & Waite, D. E. (1996). Bone grafting for the alveolar cleft defect. In Seminars in orthodontics, 2(3), (pp. 192–196). Philadelphia, USA, WB Saunders. Elsevier.

    Google Scholar 

  39. Boyne, P. J. (1972). Secondary bone grafting of residual alveolar and palatal clefts. Journal of Oral Surgery, 30, 87–92.

    Google Scholar 

  40. Piitulainen, J. M., et al. (2015). Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurgery, 83(5), 708–714.

    Article  Google Scholar 

  41. Iaccarino, C., et al. (2015). Preliminary results of a prospective study on methods of cranial reconstruction. Journal of Oral and Maxillofacial Surgery, 73(12), 2375–2378.

    Article  Google Scholar 

  42. Reddy, S., et al. (2014). Clinical outcomes in cranioplasty: Risk factors and choice of reconstructive material. Plastic and Reconstructive Surgery, 133(4), 864–873.

    Article  Google Scholar 

  43. Bhumiratana, S., et al. (2011). Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials, 32(11), 2812–2820.

    Article  Google Scholar 

  44. Rotaru, H., et al. (2006). Silicone rubber mould cast polyethylmethacrylate-hydroxyapatite plate used for repairing a large skull defect. Journal of Cranio-Maxillofacial Surgery, 34(4), 242–246.

    Article  Google Scholar 

  45. Vignes, J.-R., et al. (2007). Cranioplasty for repair of a large bone defect in a growing skull fracture in children. Journal of Cranio-Maxillofacial Surgery, 35(3), 185–188.

    Article  Google Scholar 

  46. Goldstein, J. A., Paliga, J. T., & Bartlett, S. P. (2013). Cranioplasty: Indications and advances. Current Opinion in Otolaryngology & Head and Neck Surgery, 21(4), 400–409.

    Article  Google Scholar 

  47. Bernal-Sprekelsen, M., et al. (2014). Management of anterior skull base defect depending on its size and location. BioMed Research International, 2014, 1.

    Article  Google Scholar 

  48. Archibald, S., Jackson, S., & Thoma, A. (2005). Paranasal sinus and midfacial reconstruction. Clinics in Plastic Surgery, 32(3), 309–325.

    Article  Google Scholar 

  49. Okay, D. J., et al. (2001). Prosthodontic guidelines for surgical reconstruction of the maxilla: A classification system of defects. The Journal of Prosthetic Dentistry, 86(4), 352–363.

    Article  Google Scholar 

  50. Chang, Y.-M., et al. (2004). Maxillary reconstruction with a fibula osteoseptocutaneous free flap and simultaneous insertion of osseointegrated dental implants. Plastic and Reconstructive Surgery, 113(4), 1140–1145.

    Article  Google Scholar 

  51. Yazar, S., et al. (2006). Osteomyocutaneous peroneal artery perforator flap for reconstruction of composite maxillary defects. Head & Neck, 28(4), 297–304.

    Article  Google Scholar 

  52. Heredero, S., et al. (2016). Osteomyocutaneous peroneal artery perforator flap for reconstruction of the skull base. British Journal of Oral and Maxillofacial Surgery, 54(1), 99–101.

    Article  Google Scholar 

  53. Hanasono, M. M. (2014). Reconstructive surgery for head and neck cancer patients. Advances in Medicine, 2014, 1.

    Article  Google Scholar 

  54. Wehage, I. C., & Fansa, H. (2011). Complex reconstructions in head and neck cancer surgery: Decision making. Head & Neck Oncology, 3(1), 14.

    Article  Google Scholar 

  55. George, R. K., & Krishnamurthy, A. (2013). Microsurgical free flaps: Controversies in maxillofacial reconstruction. Annals of Maxillofacial Surgery, 3(1), 72.

    Article  Google Scholar 

  56. Wei, F.-C., et al. (2003). Complications after reconstruction by plate and soft-tissue free flap in composite mandibular defects and secondary salvage reconstruction with osteocutaneous flap. Plastic and Reconstructive Surgery, 112(1), 37–42.

    Article  Google Scholar 

  57. Allsopp, B. J., Hunter-Smith, D. J., & Rozen, W. M. (2016). Vascularized versus nonvascularized bone grafts: what is the evidence? Clinical Orthopaedics and Related Research®, 474(5), 1319–1327.

    Article  Google Scholar 

  58. Akinbami, B. O. (2016). Reconstruction of continuity defects of the mandible with non-vascularized bone grafts. Systematic literature review. Craniomaxillofacial Trauma & Reconstruction, 9(3), 195.

    Article  Google Scholar 

  59. Osborn, T. M., Helal, D., & Mehra, P. (2018). Iliac crest bone grafting for mandibular reconstruction: 10-year experience outcomes. Journal of Oral Biology and Craniofacial Research, 8(1), 25–29.

    Article  Google Scholar 

  60. Disa, J. J., et al. (1999). Evaluation of bone height in osseous free flap mandible reconstruction: An indirect measure of bone mass. Plastic and Reconstructive Surgery, 103(5), 1371–1377.

    Article  Google Scholar 

  61. Pogrel, M., et al. (1997). A comparison of vascularized and nonvascularized bone grafts for reconstruction of mandibular continuity defects. Journal of Oral and Maxillofacial Surgery, 55(11), 1200–1206.

    Article  Google Scholar 

  62. Foster, R. D., et al. (1999). Vascularized bone flaps versus nonvascularized bone grafts for mandibular reconstruction: An outcome analysis of primary bony union and endosseous implant success. Head & Neck, 21(1), 66–71.

    Article  Google Scholar 

  63. Gadre, P. K., et al. (2011). Nonvascularized bone grafting for mandibular reconstruction: Myth or reality? Journal of Craniofacial Surgery, 22(5), 1727–1735.

    Article  Google Scholar 

  64. Ndukwe, K. C., et al. (2014). Reconstruction of mandibular defects using nonvascularized autogenous bone graft in nigerians. Nigerian Journal of Surgery, 20(2), 87–91.

    Article  Google Scholar 

  65. Adenike, O. A., et al. (2014). Perioperative findings and complications of non-vascularised iliac crest graft harvest: The experience of a Nigerian tertiary hospital. Nigerian Medical Journal, 55(3), 224.

    Article  Google Scholar 

  66. Motamedian, S. R., et al. (2015). Smart scaffolds in bone tissue engineering: A systematic review of literature. World Journal of Stem Cells, 7(3), 657.

    Article  Google Scholar 

  67. Hosseinpour, S., et al. (2017). Application of selected scaffolds for bone tissue engineering: A systematic review. Oral and Maxillofacial Surgery, 21(2), 109–129.

    Article  MathSciNet  Google Scholar 

  68. Ferrari, S., Ferri, A., & Bianchi, B. (2015). Scapular tip free flap in head and neck reconstruction. Current Opinion in Otolaryngology & Head and Neck Surgery, 23(2), 115–120.

    Article  Google Scholar 

  69. Mazza, E., & Ehret, A. E. (2015). Mechanical biocompatibility of highly deformable biomedical materials. Journal of the Mechanical Behavior of Biomedical Materials, 48, 100–124.

    Article  Google Scholar 

  70. Taub, P. J., et al. (2009). Bioengineering of calvaria with adult stem cells. Plastic and Reconstructive Surgery, 123(4), 1178–1185.

    Article  Google Scholar 

  71. Nakano, K., et al. (2016). Promotion of osteogenesis and angiogenesis in vascularized tissue-engineered bone using osteogenic matrix cell sheets. Plastic and Reconstructive Surgery, 137(5), 1476–1484.

    Article  Google Scholar 

  72. Nkenke, E., et al. (2002). Morbidity of harvesting of retromolar bone grafts: A prospective study. Clinical Oral Implants Research, 13(5), 514–521.

    Article  Google Scholar 

  73. Nkenke, E., et al. (2001). Morbidity of harvesting of chin grafts: A prospective study. Clinical Oral Implants Research, 12(5), 495–502.

    Article  Google Scholar 

  74. Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue engineering and regenerative medicine: History, progress, and challenges. Annual Review of Chemical and Biomolecular Engineering, 2, 403–430.

    Article  Google Scholar 

  75. Wolff, J., et al. (2013). GMP-level adipose stem cells combined with computer-aided manufacturing to reconstruct mandibular ameloblastoma resection defects: Experience with three cases. Annals of Maxillofacial Surgery, 3(2), 114.

    Article  Google Scholar 

  76. Best, S., et al. (2008). Bioceramics: Past, present and for the future. Journal of the European Ceramic Society, 28(7), 1319–1327.

    Article  Google Scholar 

  77. Kang, H.-W., et al. (2016). A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 34(3), 312.

    Article  MathSciNet  Google Scholar 

  78. Kohan, E., et al. (2015). Customized bilaminar resorbable mesh with BMP-2 promotes cranial bone defect healing. Annals of Plastic Surgery, 74(5), 603–608.

    Article  Google Scholar 

  79. Warnke, P., et al. (2004). Growth and transplantation of a custom vascularised bone graft in a man. The Lancet, 364(9436), 766–770.

    Article  Google Scholar 

  80. Warnke, P. H., et al. (2006). Man as living bioreactor: Fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials, 27(17), 3163–3167.

    Article  Google Scholar 

  81. Sándor, G. K., et al. (2013). Adipose stem cell tissue–engineered construct used to treat large anterior mandibular defect: A case report and review of the clinical application of good manufacturing practice–level adipose stem cells for bone regeneration. Journal of Oral and Maxillofacial Surgery, 71(5), 938–950.

    Article  Google Scholar 

  82. Khojasteh, A., Morad, G., & Behnia, H. (2013). Clinical importance of recipient site characteristics for vertical ridge augmentation: A systematic review of literature and proposal of a classification. The Journal of Oral Implantology, 39(3), 386–398.

    Article  Google Scholar 

  83. Caplanis, N., Lozada, J. L., & Kan, J. Y. (2005). Extraction defect assessment, classification, and management. Journal of the California Dental Association, 33(11), 853–863.

    Google Scholar 

  84. Vanden Bogaerde, L. (2004). A proposal for the classification of bony defects adjacent to dental implants. The International Journal of Periodontics & Restorative Dentistry, 24(3), 264–271.

    Google Scholar 

  85. Wang, H. L., & Katranji, A. (2008). ABC sinus augmentation classification. The International Journal of Periodontics & Restorative Dentistry, 28(4), 383–389.

    Google Scholar 

  86. Khojasteh, A., et al. (2013). Vertical bone augmentation with simultaneous implant placement using particulate mineralized bone and mesenchymal stem cells: A preliminary study in rabbit. The Journal of Oral Implantology, 39(1), 3–13.

    Article  Google Scholar 

  87. Tinti, C., Parma-Benfenati, S., & Polizzi, G. (1996). Vertical ridge augmentation: What is the limit? The International Journal of Periodontics & Restorative Dentistry, 16(3), 220–229.

    Google Scholar 

  88. Hassani, A., Khojasteh, A., & Shamsabad, A. N. (2005). The anterior palate as a donor site in maxillofacial bone grafting: A quantitative anatomic study. Journal of Oral and Maxillofacial Surgery, 63(8), 1196–1200.

    Article  Google Scholar 

  89. Aghaloo, T. L., & Moy, P. K. (2007). Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? The International Journal of Oral & Maxillofacial Implants, 22 Suppl, 49–70.

    Google Scholar 

  90. Beitlitum, I., Artzi, Z., & Nemcovsky, C. E. (2010). Clinical evaluation of particulate allogeneic with and without autogenous bone grafts and resorbable collagen membranes for bone augmentation of atrophic alveolar ridges. Clinical Oral Implants Research, 21(11), 1242–1250.

    Article  Google Scholar 

  91. Khojasteh, A., et al. (2017). The influence of initial alveolar ridge defect morphology on the outcome of implants in augmented atrophic posterior mandible: An exploratory retrospective study. Clinical Oral Implants Research, 28(10), e208–e217.

    Article  Google Scholar 

  92. Morad, G., & Khojasteh, A. (2013). Cortical tenting technique versus onlay layered technique for vertical augmentation of atrophic posterior mandibles: A split-mouth pilot study. Implant Dentistry, 22(6), 566–571.

    Article  Google Scholar 

  93. Khojasteh, A., et al. (2016). Cortical bone augmentation versus nerve lateralization for treatment of atrophic posterior mandible: A retrospective study and review of literature. Clinical Implant Dentistry and Related Research, 18(2), 342–359.

    Article  Google Scholar 

  94. Behnia, H., et al. (2015). Accuracy and reliability of cone beam computed tomographic measurements of the bone labial and palatal to the maxillary anterior teeth. International Journal of Oral & Maxillofacial Implants, 30(6).

    Article  Google Scholar 

  95. Khodayari, A., et al. (2011). Spontaneous regeneration of the mandible after hemimandibulectomy: Report of a case. Journal of Dentistry (Tehran, Iran), 8(3), 152.

    Google Scholar 

  96. Behnia, H., et al. (2013). Multidisciplinary reconstruction of a palatomaxillary defect with nonvascularized fibula bone graft and distraction osteogenesis. Journal of Craniofacial Surgery, 24(2), e186–e190.

    Article  Google Scholar 

  97. Behnia, H., et al. (2008). Treatment of arteriovenous malformations: Assessment of 2 techniques—Transmandibular curettage versus resection and immediate replantation. Journal of Oral and Maxillofacial Surgery, 66(12), 2557–2565.

    Article  Google Scholar 

  98. Khojasteh, A., & Sadeghi, N. (2016). Application of buccal fat pad-derived stem cells in combination with autogenous iliac bone graft in the treatment of maxillomandibular atrophy: A preliminary human study. International Journal of Oral and Maxillofacial Surgery, 45(7), 864–871.

    Article  Google Scholar 

  99. Donos, N., Mardas, N., & Chadha, V. (2008). Clinical outcomes of implants following lateral bone augmentation: Systematic assessment of available options (barrier membranes, bone grafts, split osteotomy). Journal of Clinical Periodontology, 35(8 Suppl), 173–202.

    Article  Google Scholar 

  100. Nissan, J., et al. (2011). Implant-supported restoration of congenitally missing teeth using cancellous bone block-allografts. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 111(3), 286–291.

    Article  Google Scholar 

  101. Penarrocha-Diago, M., et al. (2013). Localized lateral alveolar ridge augmentation with block bone grafts: Simultaneous versus delayed implant placement: A clinical and radiographic retrospective study. The International Journal of Oral & Maxillofacial Implants, 28(3), 846–853.

    Article  Google Scholar 

  102. Soltan, M., Smiler, D. G., & Gailani, F. (2005). A new “platinum” standard for bone grafting: Autogenous stem cells. Implant Dentistry, 14(4), 322–327.

    Article  Google Scholar 

  103. Bhumiratana, S., & Vunjak-Novakovic, G. (2012). Concise review: Personalized human bone grafts for reconstructing head and face. Stem Cells Translational Medicine, 1(1), 64–69.

    Article  Google Scholar 

  104. Bose, S., Roy, M., & Bandyopadhyay, A. (2012). Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 30(10), 546–554.

    Article  Google Scholar 

  105. Bhatsange, A., et al. (2017). Management of fenestration using bone allograft in conjunction with platelet-rich fibrin. Journal of Indian Society of Periodontology, 21(4), 337.

    Google Scholar 

  106. Ricucci, D., et al. (2018). Management and Histobacteriological findings of mucosal fenestration: A report of 2 cases. Journal of Endodontia, 44, 1583.

    Article  Google Scholar 

  107. Mulyar, M. K. Y. (2015). Bone fenestration: A case report of management of a lower anterior buccal bone fenestration. International Dental Journal of Students Research, 3.

    Google Scholar 

  108. Jensen, O. T., et al. (1995). Vertical guided bone-graft augmentation in a new canine mandibular model. International Journal of Oral & Maxillofacial Implants, 10(3).

    Google Scholar 

  109. Klokkevold, P., Han, T., & Camargo, P. (1999). Aesthetic management of extractions for implant site development: Delayed versus staged implant placement. Practical Periodontics and Aesthetic Dentistry, 11(5), 603–610. quiz 612.

    Google Scholar 

  110. Dahlin, C., et al. (1995). Treatment of fenestration and dehiscence bone defects around oral implants using the guided tissue regeneration technique: A prospective multicenter study. International Journal of Oral & Maxillofacial Implants, 10(3).

    Google Scholar 

  111. Newman, M. G., et al. (2011). Carranza’s clinical periodontology. Philadelphia: Elsevier Health Sciences.

    Google Scholar 

  112. Bains, V. K., et al. (2015). Management of dehiscence and fenestration alveolar defects around incisors using platelet-rich fibrin: Report of two cases. Journal of Interdisciplinary Dentistry, 5(2), 92.

    Article  Google Scholar 

  113. Rosen, P. S., & Reynolds, M. A. (2001). Guided bone regeneration for dehiscence and fenestration defects on implants using an absorbable polymer barrier. Journal of Periodontology, 72(2), 250–256.

    Article  Google Scholar 

  114. Von Eiselsberg, F. (1901). Zur technik der uranoplastik. Arch Klin Chir, 64(64), 509–529.

    Google Scholar 

  115. Lexer, E. (1908). Die verwendung der freien knochenplastic nebst versuchen uber gelenkversteifung & gelenk-transplantation. Arth Klin Chir, 86, 939.

    Google Scholar 

  116. Drachter, R. (1914). Die Gaumenspalte und deren operative Behandlung. Deutsche Zeitschrift für Chirurgie, 131(1–2), 1–89.

    Article  Google Scholar 

  117. Kang, N. H. (2017). Current methods for the treatment of alveolar cleft. Archives of Plastic Surgery, 44(3), 188.

    Article  Google Scholar 

  118. Schmid, E. (1960). Die Osteoplastik bei Lippen-Kiefer-Gaumenspalten. Langenbecks Archiv für klinische Chirurgie, 295(1), 868–876.

    Google Scholar 

  119. Skoog, T. (1967). The use of periosteum and Surgicel® for bone restoration in congenital clefts of the maxilla: A clinical report and experimental investigation. Scandinavian Journal of Plastic and Reconstructive Surgery, 1(2), 113–130.

    Article  Google Scholar 

  120. Coots, B. K. (2012). Alveolar bone grafting: Past, present, and new horizons. In Seminars in plastic surgery, 26(4), (pp. 178–183). Stuttgart, Germany, Thieme Medical Publishers.

    Google Scholar 

  121. Borba, A. M., et al. (2014). Predictors of complication for alveolar cleft bone graft. British Journal of Oral and Maxillofacial Surgery, 52(2), 174–178.

    Article  Google Scholar 

  122. Bajaj, A. K., Wongworawat, A. A., & Punjabi, A. (2003). Management of alveolar clefts. Journal of Craniofacial Surgery, 14(6), 840–846.

    Article  Google Scholar 

  123. Koh, K. S., et al. (2013). Treatment algorithm for bilateral alveolar cleft based on the position of the premaxilla and the width of the alveolar gap. Journal of Plastic, Reconstructive & Aesthetic Surgery, 66(9), 1212–1218.

    Article  Google Scholar 

  124. Tanimoto, K., et al. (2013). Longitudinal changes in the height and location of bone bridge from autogenous iliac bone graft in patients with cleft lip and palate. Open Journal of Stomatology, 3(01), 58.

    Article  Google Scholar 

  125. Wahaj, A., Hafeez, K., & Zafar, M. S. (2016). Role of bone graft materials for cleft lip and palate patients: A systematic review. The Saudi Journal for Dental Research, 7(1), 57–63.

    Article  Google Scholar 

  126. Scott, J. K., Webb, R. M., & Flood, T. R. (2007). Premaxillary osteotomy and guided tissue regeneration in secondary bone grafting in children with bilateral cleft lip and palate. The Cleft Palate-Craniofacial Journal, 44(5), 469–475.

    Article  Google Scholar 

  127. Murthy, A. S., & Lehman, J. A., Jr. (2006). Secondary alveolar bone grafting: An outcome analysis. Canadian Journal of Plastic Surgery, 14(3), 172–174.

    Article  Google Scholar 

  128. Santiago, P. E., & Grayson, B. H. (2009). Role of the craniofacial orthodontist on the craniofacial and cleft lip and palate team. In Seminars in orthodontics, 15(4), (pp. 225–243). Philadelphia, USA, WB Saunders. Elsevier.

    Google Scholar 

  129. Duskova, M., et al. (2007). Bone reconstruction of the maxillary alveolus for subsequent insertion of a dental implant in patients with cleft lip and palate. Journal of Craniofacial Surgery, 18(3), 630–638.

    Article  Google Scholar 

  130. Giudice, G., et al. (2007). The role of functional orthodontic stress on implants in residual alveolar cleft. Plastic and Reconstructive Surgery, 119(7), 2206–2217.

    Article  Google Scholar 

  131. de Barros Ferreira Jr, S., et al. (2010). Survival of dental implants in the cleft area—A retrospective study. The Cleft Palate-Craniofacial Journal, 47(6), 586–590.

    Article  Google Scholar 

  132. Bergland, O., Semb, G., & Abyholm, F. E. (1986). Elimination of the residual alveolar cleft by secondary bone grafting and subsequent orthodontic treatment. The Cleft Palate Journal, 23(3), 175–205.

    Google Scholar 

  133. Enemark, H., Sindet-Pedersen, S., & Bundgaard, M. (1987). Long-term results after secondary bone grafting of alveolar clefts. Journal of Oral and Maxillofacial Surgery, 45(11), 913–918.

    Article  Google Scholar 

  134. Long, R. E., Jr., Spangler, B. E., & Yow, M. (1995). Cleft width and secondary alveolar bone graft success. The Cleft Palate-Craniofacial Journal, 32(5), 420–427.

    Article  Google Scholar 

  135. Kindelan, J. D., Nashed, R. R., & Bromige, M. R. (1997). Radiographic assessment of secondary autogenous alveolar bone grafting in cleft lip and palate patients. The Cleft Palate-Craniofacial Journal, 34(3), 195–198.

    Article  Google Scholar 

  136. Feichtinger, M., Mossböck, R., & Kärcher, H. (2007). Assessment of bone resorption after secondary alveolar bone grafting using three-dimensional computed tomography: A three-year study. The Cleft Palate-Craniofacial Journal, 44(2), 142–148.

    Article  Google Scholar 

  137. Honma, K., et al. (1999). Computed tomographic evaluation of bone formation after secondary bone grafting of alveolar clefts. Journal of Oral and Maxillofacial Surgery, 57(10), 1209–1213.

    Article  Google Scholar 

  138. Trindade, I. K., et al. (2005). Long-term radiographic assessment of secondary alveolar bone grafting outcomes in patients with alveolar clefts. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, 100(3), 271–277.

    Article  Google Scholar 

  139. Tan, A. E., et al. (1996). Secondary alveolar bone grafting—Five-year periodontal and radiographic evaluation in 100 consecutive cases. The Cleft Palate-Craniofacial Journal, 33(6), 513–518.

    Google Scholar 

  140. Khojasteh, A., et al. (2016). The effect of a platelet-rich fibrin conduit on neurosensory recovery following inferior alveolar nerve lateralization: A preliminary clinical study. International Journal of Oral and Maxillofacial Surgery, 45(10), 1303–1308.

    Article  Google Scholar 

  141. Khojasteh, A., et al. (2019). Buccal fat pad-derived stem cells with anorganic bovine bone mineral scaffold for augmentation of atrophic posterior mandible: An exploratory prospective clinical study. Clinical Implant Dentistry and Related Research, 21, 292.

    Article  Google Scholar 

  142. Khojasteh, A., et al. (2018). Antibody-mediated osseous regeneration for bone tissue engineering in canine segmental defects. BioMed Research International, 2018, 1.

    Article  Google Scholar 

  143. Behnia, H., et al. (2012). Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: A preliminary report. Journal of Cranio-Maxillo-Facial Surgery, 40(1), 2–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Khojasteh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khojasteh, A., Hosseinpour, S. (2020). Challenges in the Rehabilitation Handling of Large and Localized Oral and Maxillofacial Defects. In: Tayebi, L. (eds) Applications of Biomedical Engineering in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-21583-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21583-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21582-8

  • Online ISBN: 978-3-030-21583-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics