Skip to main content

Interventional Radiologic Therapies for Hepatocellular Carcinoma: From Where We Began to Where We Are Going

  • Chapter
  • First Online:
Hepatocellular Carcinoma

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Hepatocellular carcinoma (HCC) is dominantly supplied by arterial blood flow, whereas the normal underlying liver parenchyma is supplied by both the portal vein (75%) and hepatic artery (25%). This distinction in blood supply of tumor tissue relative to liver tissue led to the exploration of targeting the arterial blood supply as a means of therapeutic intervention. This chapter overviews the evolution of transarterial therapies for HCC from the initial attempts of hepatic artery ligation/infusion to the current standard care treatments, including variants of transarterial chemoembolization and radioembolization. Emerging therapeutic approaches, including biologic and biomimetic injection, are discussed as potential future strategies with improved tumor targeting and specificity for the treatment of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright RD. The blood supply of newly developed epithelial tissue in the liver. J Pathol Bacteriol. 1937;45(2):405–14.

    Article  Google Scholar 

  2. Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol. 1954;30(5):969–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Markowitz J. The hepatic artery. Surg Gynecol Obstet. 1952;95(5):644–6.

    CAS  PubMed  Google Scholar 

  4. Nilsson LA, Zettergren L. Blood supply and vascular pattern of induced primary hepatic carcinoma in rats. A microangiographic and histologic investigation. Acta Pathol Microbiol Scand. 1967;71(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  5. Nilsson LA, Zettergren L. Effect of hepatic artery ligation on induced primary liver carcinoma in rats. Preliminary report. Acta Pathol Microbiol Scand. 1967;71(2):187–93.

    Article  CAS  PubMed  Google Scholar 

  6. Mori W, Masuda M, Miyanaga T. Hepatic artery ligation and tumor necrosis in the liver. Surgery. 1966;59(3):359–63.

    CAS  PubMed  Google Scholar 

  7. Gelin LE, Lewis DH, Nilsson L. Liver blood flow in man during abdominal surgery. II. The effect of hepatic artery occlusion on the blood flow through metastatic tumor nodules. Acta Hepatosplenol. 1968;15(1):21–4.

    CAS  PubMed  Google Scholar 

  8. Almersjo O, Bengmark S, Rudenstam CM, Hafstrom L, Nilsson LA. Evaluation of hepatic dearterialization in primary and secondary cancer of the liver. Am J Surg. 1972;124(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  9. Bengmark S, Rosengren K. Angiographic study of the collateral circulation to the liver after ligation of the hepatic artery in man. Am J Surg. 1970;119(6):620–4.

    Article  CAS  PubMed  Google Scholar 

  10. Bierman HR, Byron RL Jr, Kelley KH, Grady A. Studies on the blood supply of tumors in man. III. Vascular patterns of the liver by hepatic arteriography in vivo. J Natl Cancer Inst. 1951;12(1):107–31.

    CAS  PubMed  Google Scholar 

  11. Bierman HR, Kelly KH, Byron RL Jr, Dod KS, Shimkin MB. Studies on the blood supply of tumors in man. II. Intra-arterial nitrogen mustard therapy of cutaneous lesions. J Natl Cancer Inst. 1951;11(5):891–905.

    CAS  PubMed  Google Scholar 

  12. Clarkson B, Young C, Dierick W, Kuehn P, Kim M, Berrett A, et al. Effects of continuous hepatic artery infusion of antimetabolites on primary and metastatic cancer of the liver. Cancer. 1962;15:472–88.

    Article  CAS  PubMed  Google Scholar 

  13. Chuang VP, Wallace S. Hepatic artery embolization in the treatment of hepatic neoplasms. Radiology. 1981;140(1):51–8. https://doi.org/10.1148/radiology.140.1.7244243.

    Article  CAS  PubMed  Google Scholar 

  14. Kato T, Nemoto R, Mori H, Takahashi M, Tamakawa Y, Harada M. Arterial chemoembolization with microencapsulated anticancer drug. An approach to selective cancer chemotherapy with sustained effects. JAMA. 1981;245(11):1123–7.

    Article  CAS  PubMed  Google Scholar 

  15. Yamada R, Sato M, Kawabata M, Nakatsuka H, Nakamura K, Takashima S. Hepatic artery embolization in 120 patients with unresectable hepatoma. Radiology. 1983;148(2):397–401. https://doi.org/10.1148/radiology.148.2.6306721.

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura H, Hashimoto T, Oi H, Sawada S. Transcatheter oily chemoembolization of hepatocellular carcinoma. Radiology. 1989;170(3. Pt 1):783–6. https://doi.org/10.1148/radiology.170.3.2536946.

    Article  CAS  PubMed  Google Scholar 

  17. Takayasu K, Shima Y, Muramatsu Y, Moriyama N, Yamada T, Makuuchi M, et al. Hepatocellular carcinoma: treatment with intraarterial iodized oil with and without chemotherapeutic agents. Radiology. 1987;163(2):345–51. https://doi.org/10.1148/radiology.163.2.3031724.

    Article  CAS  PubMed  Google Scholar 

  18. Lin DY, Liaw YF, Lee TY, Lai CM. Hepatic arterial embolization in patients with unresectable hepatocellular carcinoma--a randomized controlled trial. Gastroenterology. 1988;94(2):453–6.

    Article  CAS  PubMed  Google Scholar 

  19. Pelletier G, Roche A, Ink O, Anciaux ML, Derhy S, Rougier P, et al. A randomized trial of hepatic arterial chemoembolization in patients with unresectable hepatocellular carcinoma. J Hepatol. 1990;11(2):181–4.

    Article  CAS  PubMed  Google Scholar 

  20. Pelletier G, Ducreux M, Gay F, Luboinski M, Hagege H, Dao T, et al. Treatment of unresectable hepatocellular carcinoma with lipiodol chemoembolization: a multicenter randomized trial. Groupe CHC. J Hepatol. 1998;29(1):129–34.

    Article  CAS  PubMed  Google Scholar 

  21. Bruix J, Llovet JM, Castells A, Montana X, Bru C, Ayuso MC, et al. Transarterial embolization versus symptomatic treatment in patients with advanced hepatocellular carcinoma: results of a randomized, controlled trial in a single institution. Hepatology. 1998;27(6):1578–83. https://doi.org/10.1002/hep.510270617.

    Article  CAS  PubMed  Google Scholar 

  22. Lo CM, Ngan H, Tso WK, Liu CL, Lam CM, Poon RT, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35(5):1164–71. https://doi.org/10.1053/jhep.2002.33156.

    Article  CAS  PubMed  Google Scholar 

  23. Llovet JM, Real MI, Montana X, Planas R, Coll S, Aponte J, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359(9319):1734–9. https://doi.org/10.1016/S0140-6736(02)08649-X.

    Article  PubMed  Google Scholar 

  24. Brown KT, Do RK, Gonen M, Covey AM, Getrajdman GI, Sofocleous CT, et al. Randomized trial of hepatic artery embolization for hepatocellular carcinoma using doxorubicin-eluting microspheres compared with embolization with microspheres alone. J Clin Oncol. 2016;34(17):2046–53. https://doi.org/10.1200/JCO.2015.64.0821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewis AL, Gonzalez MV, Lloyd AW, Hall B, Tang Y, Willis SL, et al. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol. 2006;17(2. Pt 1):335–42. https://doi.org/10.1097/01.RVI.0000195323.46152.B3.

    Article  PubMed  Google Scholar 

  26. Lammer J, Malagari K, Vogl T, Pilleul F, Denys A, Watkinson A, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol. 2010;33(1):41–52. https://doi.org/10.1007/s00270-009-9711-7.

    Article  PubMed  Google Scholar 

  27. Golfieri R, Giampalma E, Renzulli M, Cioni R, Bargellini I, Bartolozzi C, et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Br J Cancer. 2014;111(2):255–64. https://doi.org/10.1038/bjc.2014.199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bierman HR, Byron RL Jr, Miller ER, Shimkin MB. Effects of intra-arterial administration of nitrogen mustard. Am J Med. 1950;8(4):535.

    Article  CAS  PubMed  Google Scholar 

  29. Muller JH, Rossier PH. A new method for the treatment of cancer of the lungs by means of artificial radioactivity. Acta Radiol. 1951;35(5–6):449–68.

    CAS  PubMed  Google Scholar 

  30. Grady ED, Sale WT, Rollins LC. Localization of radioactivity by intravascular injection of large radioactive particles. Ann Surg. 1963;157:97–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caldarola L, Rosa U, Badellino F, Sosi S, Cavalli A. Preparation of 32-P labelled resin microspheres for radiation treatment of tumours by intra-arterial injection. Minerva Nucl. 1964;8:169–74.

    CAS  PubMed  Google Scholar 

  32. Ariel IM. Treatment of inoperable primary pancreatic and liver cancer by the intra-arterial administration of radioactive isotopes (Y90 radiating microspheres). Ann Surg. 1965;162:267–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blanchard RJ, Grotenhuis I, Lafave JW, Frye CW, Perry JF Jr. Treatment of experimental tumors; utilization of radioactive microspheres. Arch Surg. 1964;89:406–10.

    Article  CAS  PubMed  Google Scholar 

  34. Blanchard RJ, Lafave JW, Kim YS, Frye CS, Ritchie WP, Perry JF Jr. Treatment of patients with advanced cancer utilizing Y90 microspheres. Cancer. 1965;18:375–80.

    Article  CAS  PubMed  Google Scholar 

  35. Kim YS, Lafave JW, Maclean LD. The use of radiating microspheres in the treatment of experimental and human malignancy. Surgery. 1962;52:220–31.

    CAS  PubMed  Google Scholar 

  36. Grady ED. Internal radiation therapy of hepatic cancer. Dis Colon Rectum. 1979;22(6):371–5.

    Article  CAS  PubMed  Google Scholar 

  37. Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S, et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics. 2005;25(Suppl 1):S41–55. https://doi.org/10.1148/rg.25si055515.

    Article  PubMed  Google Scholar 

  38. Camacho JC, Moncayo V, Kokabi N, Reavey HE, Galt JR, Yamada K, et al. (90)Y Radioembolization: multimodality imaging pattern approach with angiographic correlation for optimized target therapy delivery. Radiographics. 2015;35(5):1602–18. https://doi.org/10.1148/rg.2015140314.

    Article  PubMed  Google Scholar 

  39. Salem R, Gabr A, Riaz A, Mora R, Ali R, Abecassis M, et al. Institutional decision to adopt Y90 as primary treatment for hepatocellular carcinoma informed by a 1,000-patient 15-year experience. Hepatology. 2017;68:1429–40. https://doi.org/10.1002/hep.29691.

    Article  Google Scholar 

  40. Salem R, Gordon AC, Mouli S, Hickey R, Kallini J, Gabr A, et al. Y90 Radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology. 2016;151(6):1155–63 e2. https://doi.org/10.1053/j.gastro.2016.08.029.

    Article  PubMed  Google Scholar 

  41. Padia SA, Johnson GE, Horton KJ, Ingraham CR, Kogut MJ, Kwan S, et al. Segmental yttrium-90 radioembolization versus segmental chemoembolization for localized hepatocellular carcinoma: results of a single-center, retrospective, propensity score-matched study. J Vasc Interv Radiol. 2017;28(6):777–85 e1. https://doi.org/10.1016/j.jvir.2017.02.018.

    Article  PubMed  Google Scholar 

  42. Les I, Doval E, Flavia M, Jacas C, Cardenas G, Esteban R, et al. Quality of life in cirrhosis is related to potentially treatable factors. Eur J Gastroenterol Hepatol. 2010;22(2):221–7. https://doi.org/10.1097/MEG.0b013e3283319975.

    Article  PubMed  Google Scholar 

  43. Marchesini G, Bianchi G, Amodio P, Salerno F, Merli M, Panella C, et al. Factors associated with poor health-related quality of life of patients with cirrhosis. Gastroenterology. 2001;120(1):170–8.

    Article  CAS  PubMed  Google Scholar 

  44. Orr JG, Homer T, Ternent L, Newton J, McNeil CJ, Hudson M, et al. Health related quality of life in people with advanced chronic liver disease. J Hepatol. 2014;61(5):1158–65. https://doi.org/10.1016/j.jhep.2014.06.034.

    Article  PubMed  Google Scholar 

  45. White JA, Gray SH, Li P, Simpson HN, McGuire BM, Eckhoff DE, et al. Current guidelines for chemoembolization for hepatocellular carcinoma: room for improvement? Hepatol Commun. 2017;1(4):338–46. https://doi.org/10.1002/hep4.1046.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thuluvath PJ, Guidinger MK, Fung JJ, Johnson LB, Rayhill SC, Pelletier SJ. Liver transplantation in the United States, 1999-2008. Am J Transplant. 2010;10(4 Pt 2):1003–19. https://doi.org/10.1111/j.1600-6143.2010.03037.x.

    Article  CAS  PubMed  Google Scholar 

  47. Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, et al. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials. 2017;147:155–68. https://doi.org/10.1016/j.biomaterials.2017.09.020.

    Article  CAS  PubMed  Google Scholar 

  48. Yoo JW, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10(7):521–35. https://doi.org/10.1038/nrd3499.

    Article  CAS  PubMed  Google Scholar 

  49. Dehaini D, Fang RH, Zhang L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med. 2016;1(1):30–46. https://doi.org/10.1002/btm2.10004.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chan CJ, Smyth MJ, Martinet L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ. 2013;21:5. https://doi.org/10.1038/cdd.2013.26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vivier E, Ugolini S. Natural killer cells: from basic research to treatments. Front Immunol. 2011;2:18. https://doi.org/10.3389/fimmu.2011.00018.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44–9. https://doi.org/10.1126/science.1198687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee JH, Lee JH, Lim YS, Yeon JE, Song TJ, Yu SJ, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology. 2015;148(7):1383–91 e6. https://doi.org/10.1053/j.gastro.2015.02.055.

    Article  CAS  PubMed  Google Scholar 

  54. Yu R, Yang B, Chi X, Cai L, Liu C, Yang L, et al. Efficacy of cytokine-induced killer cell infusion as an adjuvant immunotherapy for hepatocellular carcinoma: a systematic review and meta-analysis. Drug Des Devel Ther. 2017;11:851–64. https://doi.org/10.2147/DDDT.S124399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sheu AY, Zhang Z, Omary RA, Larson AC. MRI-monitored transcatheter intraarterial delivery of SPIO-labeled natural killer cells to hepatocellular carcinoma: preclinical studies in a rodent model. Investig Radiol. 2013;48(6):492–9. https://doi.org/10.1097/RLI.0b013e31827994e5.

    Article  Google Scholar 

  56. Su Z, Wang X, Zheng L, Lyu T, Figini M, Wang B, et al. MRI-guided interventional natural killer cell delivery for liver tumor treatment. Cancer Med. 2018;7(5):1860–9. https://doi.org/10.1002/cam4.1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 2000;6(7):821–5. https://doi.org/10.1038/77558.

    Article  CAS  PubMed  Google Scholar 

  58. Ebert O, Shinozaki K, Huang TG, Savontaus MJ, Garcia-Sastre A, Woo SL. Oncolytic vesicular stomatitis virus for treatment of orthotopic hepatocellular carcinoma in immune-competent rats. Cancer Res. 2003;63(13):3605–11.

    CAS  PubMed  Google Scholar 

  59. Shinozaki K, Ebert O, Suriawinata A, Thung SN, Woo SL. Prophylactic alpha interferon treatment increases the therapeutic index of oncolytic vesicular stomatitis virus virotherapy for advanced hepatocellular carcinoma in immune-competent rats. J Virol. 2005;79(21):13705–13. https://doi.org/10.1128/JVI.79.21.13705-13713.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shiba H, Misawa T, Iida T, Okamoto T, Futagawa Y, Sakurai M, et al. Adenovirus vector-mediated gene therapy using iodized oil esters for hepatocellular carcinoma in rats. Anticancer Res. 2008;28(1a):51–3.

    CAS  PubMed  Google Scholar 

  61. Anderson SC, Johnson DE, Harris MP, Engler H, Hancock W, Huang WM, et al. p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of a recombinant adenovirus. Clin Cancer Res. 1998;4(7):1649–59.

    CAS  PubMed  Google Scholar 

  62. Shen A, Liu S, Yu W, Deng H, Li Q. p53 gene therapy-based transarterial chemoembolization for unresectable hepatocellular carcinoma: a prospective cohort study. J Gastroenterol Hepatol. 2015;30(11):1651–6. https://doi.org/10.1111/jgh.13009.

    Article  CAS  PubMed  Google Scholar 

  63. Reynolds L, Mulik RS, Wen X, Dilip A, Corbin IR. Low-density lipoprotein-mediated delivery of docosahexaenoic acid selectively kills murine liver cancer cells. Nanomedicine (Lond). 2014;9(14):2123–41. https://doi.org/10.2217/nnm.13.187.

    Article  CAS  Google Scholar 

  64. Wen X, Reynolds L, Mulik RS, Kim SY, Van Treuren T, Nguyen LH, et al. Hepatic arterial infusion of low-density lipoprotein docosahexaenoic acid nanoparticles selectively disrupts redox balance in hepatoma cells and reduces growth of orthotopic liver tumors in rats. Gastroenterology. 2016;150(2):488–98. https://doi.org/10.1053/j.gastro.2015.10.008.

    Article  CAS  PubMed  Google Scholar 

  65. Vitols S. Uptake of low-density lipoprotein by malignant cells--possible therapeutic applications. Cancer Cells. 1991;3(12):488–95.

    CAS  PubMed  Google Scholar 

  66. Firestone RA. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjug Chem. 1994;5(2):105–13.

    Article  CAS  PubMed  Google Scholar 

  67. Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D, et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR–dependent pathway. Cancer Discov. 2011;1:442–56. https://doi.org/10.1158/2159-8290.cd-11-0102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rodrigues dos Santos C, Domingues G, Matias I, Matos J, Fonseca I, de Almeida JM, et al. LDL-cholesterol signaling induces breast cancer proliferation and invasion. Lipids Health Dis. 2014;13:16. https://doi.org/10.1186/1476-511X-13-16.

    Article  CAS  PubMed Central  Google Scholar 

  69. Czeczot H, Scibior D, Skrzycki M, Podsiad M. Glutathione and GSH-dependent enzymes in patients with liver cirrhosis and hepatocellular carcinoma. Acta Biochim Pol. 2006;53(1):237–42.

    Article  CAS  PubMed  Google Scholar 

  70. Tsai S-M, Lin S-K, Lee K-T, Hsiao J-K, Huang J-C, Wu S-H, et al. Evaluation of redox statuses in patients with hepatitis B virus-associated hepatocellular carcinoma. Ann Clin Biochem. 2009;46(5):394–400. https://doi.org/10.1258/acb.2009.009029.

    Article  CAS  PubMed  Google Scholar 

  71. Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358(1):1–3. https://doi.org/10.1016/0014-5793(94)01368-B.

    Article  CAS  PubMed  Google Scholar 

  72. Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 2010;70(20):8117–26. https://doi.org/10.1158/0008-5472.CAN-09-3871.

    Article  CAS  PubMed  Google Scholar 

  73. Skill NJ, Scott RE, Wu J, Maluccio MA. Hepatocellular carcinoma associated lipid metabolism reprogramming. J Surg Res. 2011;169(1):51–6. https://doi.org/10.1016/j.jss.2009.09.005.

    Article  CAS  PubMed  Google Scholar 

  74. Araki E, Phillips F, Privett OS. Studies on lipid and fatty acid composition of human hepatoma tissue. Lipids. 1974;9(9):707–12.

    Article  CAS  PubMed  Google Scholar 

  75. Moss LR, Mulik RS, Van Treuren T, Kim SY, Corbin IR. Investigation into the distinct subcellular effects of docosahexaenoic acid loaded low-density lipoprotein nanoparticles in normal and malignant murine liver cells. Biochim Biophys Acta. 2016;1860:2363–76. https://doi.org/10.1016/j.bbagen.2016.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ou W, Mulik RS, Anwar A, McDonald JG, He X, Corbin IR. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic Biol Med. 2017;112:597–607. https://doi.org/10.1016/j.freeradbiomed.2017.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wáng Y-XJ, De Baere T, Idée J-M, Ballet S. Transcatheter embolization therapy in liver cancer: an update of clinical evidences. Chin J Cancer Res. 2015;27(2):96–121. https://doi.org/10.3978/j.issn.1000-9604.2015.03.03.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Namur J, Citron SJ, Sellers MT, Dupuis MH, Wassef M, Manfait M, et al. Embolization of hepatocellular carcinoma with drug-eluting beads: doxorubicin tissue concentration and distribution in patient liver explants. J Hepatol. 2011;55(6):1332–8. https://doi.org/10.1016/j.jhep.2011.03.024.

    Article  CAS  PubMed  Google Scholar 

  79. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–31. https://doi.org/10.1016/j.cell.2013.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manzi L, Costantini L, Molinari R, Merendino N. Effect of dietary ω-3 polyunsaturated fatty acid DHA on glycolytic enzymes and Warburg phenotypes in cancer. Biomed Res Int. 2015;2015:137097. https://doi.org/10.1155/2015/137097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stephenson JA, Al-Taan O, Arshad A, Morgan B, Metcalfe MS, Dennison AR. The multifaceted effects of omega-3 polyunsaturated fatty acids on the hallmarks of cancer. J Lipids. 2013;2013:261247. https://doi.org/10.1155/2013/261247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. D’Eliseo D, Velotti F. Omega-3 fatty acids and cancer cell cytotoxicity: implications for multi-targeted cancer therapy. J Clin Med. 2016;5(2):15. https://doi.org/10.3390/jcm5020015.

    Article  CAS  PubMed Central  Google Scholar 

  84. Lim K, Han C, Dai Y, Shen M, Wu T. Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking beta-catenin and cyclooxygenase-2. Mol Cancer Ther. 2009;8(11):3046–55. https://doi.org/10.1158/1535-7163.MCT-09-0551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Clarke SD, Thuillier P, Baillie RA, Sha X. Peroxisome proliferator-activated receptors: a family of lipid-activated transcription factors. Am J Clin Nutr. 1999;70(4):566–71. https://doi.org/10.1093/ajcn/70.4.566.

    Article  CAS  PubMed  Google Scholar 

  86. Gani OA. Are fish oil omega-3 long-chain fatty acids and their derivatives peroxisome proliferator-activated receptor agonists? Cardiovasc Diabetol. 2008;7:6. https://doi.org/10.1186/1475-2840-7-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. He X, Liu W, Shi M, Yang Z, Zhang X, Gong P. Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathways in primary bovine mammary epithelial cells. Res Vet Sci. 2017;112:7–12. https://doi.org/10.1016/j.rvsc.2016.12.011.

    Article  CAS  PubMed  Google Scholar 

  88. Liao Z, Dong J, Wu W, Yang T, Wang T, Guo L, et al. Resolvin D1 attenuates inflammation in lipopolysaccharide-induced acute lung injury through a process involving the PPARgamma/NF-kappaB pathway. Respir Res. 2012;13:110. https://doi.org/10.1186/1465-9921-13-110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang YC, Lii CK, Wei YL, Li CC, Lu CY, Liu KL, et al. Docosahexaenoic acid inhibition of inflammation is partially via cross-talk between Nrf2/heme oxygenase 1 and IKK/NF-kappaB pathways. J Nutr Biochem. 2013;24(1):204–12. https://doi.org/10.1016/j.jnutbio.2012.05.003.

    Article  CAS  PubMed  Google Scholar 

  90. Mouradian M, Kikawa KD, Dranka BP, Komas SM, Kalyanaraman B, Pardini RS. Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol Carcinog. 2015;54(9):810–20. https://doi.org/10.1002/mc.22151.

    Article  CAS  PubMed  Google Scholar 

  91. Zhou J, Zhang S, Xue J, Avery J, Wu J, Lind SE, et al. Activation of peroxisome proliferator-activated receptor alpha (PPARalpha) suppresses hypoxia-inducible factor-1alpha (HIF-1alpha) signaling in cancer cells. J Biol Chem. 2012;287(42):35161–9. https://doi.org/10.1074/jbc.M112.367367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xiong ZP, Yang SR, Liang ZY, Xiao EH, Yu XP, Zhou SK, et al. Association between vascular endothelial growth factor and metastasis after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2004;3(3):386–90.

    CAS  PubMed  Google Scholar 

  93. Liu K, Min X-L, Peng J, Yang K, Yang L, Zhang X-M. The changes of HIF-1α and VEGF expression after TACE in patients with hepatocellular carcinoma. J Clin Med Res. 2016;8(4):297–302. https://doi.org/10.14740/jocmr2496w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yi L, Zhang QY, Mi MT. [Role of Rho GTPase in inhibiting metastatic ability of human prostate cancer cell line PC-3 by omega-3 polyunsaturated fatty acid]. Ai Zheng. 2007;26(12):1281–6.

    Google Scholar 

  95. Schley PD, Brindley DN, Field CJ. (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr. 2007;137(3):548–53. https://doi.org/10.1093/jn/137.3.548.

    Article  CAS  PubMed  Google Scholar 

  96. Gonzalez-Periz A, Planaguma A, Gronert K, Miquel R, Lopez-Parra M, Titos E, et al. Docosahexaenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: protectin D1 and 17S-hydroxy-DHA. FASEB J. 2006;20(14):2537–9. https://doi.org/10.1096/fj.06-6250fje.

    Article  CAS  PubMed  Google Scholar 

  97. Depner CM, Philbrick KA, Jump DB. Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(−/−) mouse model of western diet-induced nonalcoholic steatohepatitis. J Nutr. 2013;143(3):315–23. https://doi.org/10.3945/jn.112.171322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Corbin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sutphin, P.D., Lamus, D., Kalva, S.P., Li, J., Corbin, I.R. (2019). Interventional Radiologic Therapies for Hepatocellular Carcinoma: From Where We Began to Where We Are Going. In: Hoshida, Y. (eds) Hepatocellular Carcinoma. Molecular and Translational Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-21540-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21540-8_9

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-21539-2

  • Online ISBN: 978-3-030-21540-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics