Skip to main content

Stromal and Immune Drivers of Hepatocarcinogenesis

  • Chapter
  • First Online:
Book cover Hepatocellular Carcinoma

Abstract

In the large majority of cases, hepatocellular carcinoma (HCC) develops on the background of chronic liver inflammation and fibrosis. Liver microenvironment plays a crucial role in hepatocarcinogenesis, HCC progression, response to treatment, and patients’ long-term prognosis. Chronic liver inflammation and hepatocyte damage recruit and activate immune and stromal cells that release cytokines stimulating cell proliferation and producing liver fibrosis, hepatocellular stress, DNA damage, and chromosomal alterations that finally drive hepatocyte degeneration. Moreover, immune and stromal cells, e.g., cancer-associated fibroblasts, promote HCC progression by reducing tumor immunosurveillance, stimulating angiogenesis, and recruiting cancer stem cells. Activation of stromal and immune cells leads finally to epithelial–mesenchymal transition that confers increased initiation and metastasis of cancer cells and a greater resistance to therapies. Tumor microenvironment is also a relevant target for HCC treatment. Indeed, compounds targeting exhausted immune cells infiltrating HCC (i.e., nivolumab and pembrolizumab) have recently been shown to increase survival of HCC patients after sorafenib failure and were FDA-approved as a second-line treatment for advanced HCC.

* Antonio Saviano and Natascha Roehlen are co-first authors of this chapter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 13 May 2020

    The book was inadvertently published with incorrect given name and family name in Chap. 4. The author name which is displayed as N.V. Violi is corrected to N. Vietti Violi.

References

  1. Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013;14:996. https://doi.org/10.1038/ni.2691. https://www.nature.com/articles/ni.2691#supplementary-information.

    Article  CAS  PubMed  Google Scholar 

  2. Marrone G, Shah VH, Gracia-Sancho J. Sinusoidal communication in liver fibrosis and regeneration. J Hepatol. 2016;65(3):608–17. https://doi.org/10.1016/j.jhep.2016.04.018.

    Article  PubMed  PubMed Central  Google Scholar 

  3. van Zijl F, Zulehner G, Petz M, Schneller D, Kornauth C, Hau M, et al. Epithelial-mesenchymal transition in hepatocellular carcinoma. Future Oncol. 2009;5(8):1169–79. https://doi.org/10.2217/fon.09.91.

    Article  PubMed  Google Scholar 

  4. Nishida N, Kudo M. Oncogenic signal and tumor microenvironment in hepatocellular carcinoma. Oncology. 2017;93(Suppl 1):160–4. https://doi.org/10.1159/000481246.

    Article  PubMed  Google Scholar 

  5. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359(19):1995–2004. https://doi.org/10.1056/NEJMoa0804525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G, et al. TGF-beta and the tissue microenvironment: relevance in fibrosis and cancer. Int J Mol Sci. 2018;19(5) https://doi.org/10.3390/ijms19051294.

  7. Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19(3):222–32. https://doi.org/10.1038/s41590-018-0044-z.

    Article  CAS  PubMed  Google Scholar 

  8. Robinson MW, Harmon C, O'Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol. 2016;13(3):267–76. https://doi.org/10.1038/cmi.2016.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018. https://doi.org/10.1038/nrdp.2016.18.

    Article  PubMed  Google Scholar 

  10. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14(3):181–94. https://doi.org/10.1038/nri3623.

    Article  CAS  PubMed  Google Scholar 

  11. Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A, Puengel T, et al. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 2016;64(5):1667–82. https://doi.org/10.1002/hep.28682.

    Article  CAS  PubMed  Google Scholar 

  12. Lemmers A, Moreno C, Gustot T, Marechal R, Degre D, Demetter P, et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology. 2009;49(2):646–57. https://doi.org/10.1002/hep.22680.

    Article  CAS  PubMed  Google Scholar 

  13. Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012;143(3):765–76 e3. https://doi.org/10.1053/j.gastro.2012.05.049.

    Article  CAS  PubMed  Google Scholar 

  14. Tu T, Calabro SR, Lee A, Maczurek AE, Budzinska MA, Warner FJ, et al. Hepatocytes in liver injury: victim, bystander, or accomplice in progressive fibrosis? J Gastroenterol Hepatol. 2015;30(12):1696–704. https://doi.org/10.1111/jgh.13065.

    Article  PubMed  Google Scholar 

  15. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823. https://doi.org/10.1038/ncomms3823.

    Article  CAS  PubMed  Google Scholar 

  16. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell. 2005;121(7):977–90. https://doi.org/10.1016/j.cell.2005.04.014.

    Article  CAS  PubMed  Google Scholar 

  17. Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994;77(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  18. Mackey-Lawrence NM, Petri WA Jr. Leptin and mucosal immunity. Mucosal Immunol. 2012;5(5):472–9. https://doi.org/10.1038/mi.2012.40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McCartney EM, Helbig KJ, Narayana SK, Eyre NS, Aloia AL, Beard MR. Signal transducer and activator of transcription 3 is a proviral host factor for hepatitis C virus. Hepatology. 2013;58(5):1558–68. https://doi.org/10.1002/hep.26496.

    Article  CAS  PubMed  Google Scholar 

  20. Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, Kurrer MO, et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell. 2009;16(4):295–308. https://doi.org/10.1016/j.ccr.2009.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolf MJ, Adili A, Piotrowitz K, Abdullah Z, Boege Y, Stemmer K, et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell. 2014;26(4):549–64. https://doi.org/10.1016/j.ccell.2014.09.003.

    Article  CAS  PubMed  Google Scholar 

  22. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479(7374):547–51. https://doi.org/10.1038/nature10599.

    Article  CAS  PubMed  Google Scholar 

  23. Ma C, Kesarwala AH, Eggert T, Medina-Echeverz J, Kleiner DE, Jin P, et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature. 2016;531(7593):253–7. https://doi.org/10.1038/nature16969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO, et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology. 2018;68(4):1347–60. https://doi.org/10.1002/hep.29914.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang R, Tang J, Chen Y, Deng L, Ji J, Xie Y, et al. The long noncoding RNA lnc-EGFR stimulates T-regulatory cells differentiation thus promoting hepatocellular carcinoma immune evasion. Nat Commun. 2017;8:15129. https://doi.org/10.1038/ncomms15129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li K, Liu H, Guo T. Th17/Treg imbalance is an indicator of liver cirrhosis process and a risk factor for HCC occurrence in HBV patients. Clin Res Hepatol Gastroenterol. 2017;41(4):399–407. https://doi.org/10.1016/j.clinre.2016.12.004.

    Article  CAS  PubMed  Google Scholar 

  27. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  29. Carter L, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, et al. PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol. 2002;32(3):634–43. https://doi.org/10.1002/1521-4141(200203)32:3<634::AID-IMMU634>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  30. Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Buschenfelde KH, Gerken G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol. 1995;22(2):226–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hattori E, Okumoto K, Adachi T, Takeda T, Ito J, Sugahara K, et al. Possible contribution of circulating interleukin-10 (IL-10) to anti-tumor immunity and prognosis in patients with unresectable hepatocellular carcinoma. Hepatol Res. 2003;27(4):309–14.

    Article  PubMed  Google Scholar 

  32. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765. https://doi.org/10.1146/annurev.immunol.19.1.683.

    Article  CAS  PubMed  Google Scholar 

  33. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, et al. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med. 1986;163(5):1037–50.

    Article  CAS  PubMed  Google Scholar 

  34. Espevik T, Waage A, Faxvaag A, Shalaby MR. Regulation of interleukin-2 and interleukin-6 production from T-cells: involvement of interleukin-1 beta and transforming growth factor-beta. Cell Immunol. 1990;126(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  35. Smyth MJ, Strobl SL, Young HA, Ortaldo JR, Ochoa AC. Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8+ T lymphocytes. Inhibition by transforming growth factor-beta. J Immunol. 1991;146(10):3289–97.

    CAS  PubMed  Google Scholar 

  36. Othman MS, Aref AM, Mohamed AA, Ibrahim WA. Serum levels of Interleukin-6 and Interleukin-10 as biomarkers for hepatocellular carcinoma in Egyptian patients. ISRN Hepatol. 2013;2013:412317. https://doi.org/10.1155/2013/412317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. El-Emshaty HM, Nasif WA, Mohamed IE. Serum cytokine of IL-10 and IL-12 in chronic liver disease: the immune and inflammatory response. Dis Markers. 2015;2015:707254. https://doi.org/10.1155/2015/707254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10(11):753–66. https://doi.org/10.1038/nri2858.

    Article  CAS  PubMed  Google Scholar 

  39. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  40. Nakajima T, Mizushima N, Kanai K. Relationship between natural killer activity and development of hepatocellular carcinoma in patients with cirrhosis of the liver. Jpn J Clin Oncol. 1987;17(4):327–32.

    CAS  PubMed  Google Scholar 

  41. Garnelo M, Tan A, Her Z, Yeong J, Lim CJ, Chen J, et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut. 2017;66(2):342–51. https://doi.org/10.1136/gutjnl-2015-310814.

    Article  CAS  PubMed  Google Scholar 

  42. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6. https://doi.org/10.1016/j.cell.2006.01.007.

    Article  CAS  PubMed  Google Scholar 

  43. Degroote H, Van Dierendonck A, Geerts A, Van Vlierberghe H, Devisscher L. Preclinical and clinical therapeutic strategies affecting tumor-associated macrophages in hepatocellular carcinoma. J Immunol Res. 2018;2018:7819520. https://doi.org/10.1155/2018/7819520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 2009;69(20):8067–75. https://doi.org/10.1158/0008-5472.CAN-09-0901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66(6):1300–12. https://doi.org/10.1016/j.jhep.2017.02.026.

    Article  CAS  PubMed  Google Scholar 

  46. Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 2015;62(3):607–16. https://doi.org/10.1016/j.jhep.2014.10.029.

    Article  CAS  PubMed  Google Scholar 

  47. Ding T, Xu J, Wang F, Shi M, Zhang Y, Li SP, et al. High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection. Hum Pathol. 2009;40(3):381–9. https://doi.org/10.1016/j.humpath.2008.08.011.

    Article  CAS  PubMed  Google Scholar 

  48. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52. https://doi.org/10.1038/32588.

    Article  CAS  PubMed  Google Scholar 

  49. Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol. 2006;311:17–58.

    CAS  PubMed  Google Scholar 

  50. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000;6(5):1755–66.

    CAS  PubMed  Google Scholar 

  51. Steinman RM. Lasker Basic Medical Research Award. Dendritic cells: versatile controllers of the immune system. Nat Med. 2007;13(10):1155–9. https://doi.org/10.1038/nm1643.

    Article  CAS  PubMed  Google Scholar 

  52. Kakumu S, Ito S, Ishikawa T, Mita Y, Tagaya T, Fukuzawa Y, et al. Decreased function of peripheral blood dendritic cells in patients with hepatocellular carcinoma with hepatitis B and C virus infection. J Gastroenterol Hepatol. 2000;15(4):431–6.

    Article  CAS  PubMed  Google Scholar 

  53. Chen S, Akbar SM, Tanimoto K, Ninomiya T, Iuchi H, Michitaka K, et al. Absence of CD83-positive mature and activated dendritic cells at cancer nodules from patients with hepatocellular carcinoma: relevance to hepatocarcinogenesis. Cancer Lett. 2000;148(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  54. Ormandy LA, Farber A, Cantz T, Petrykowska S, Wedemeyer H, Horning M, et al. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol. 2006;12(20):3275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–103.

    Article  CAS  PubMed  Google Scholar 

  56. Beckebaum S, Zhang X, Chen X, Yu Z, Frilling A, Dworacki G, et al. Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res. 2004;10(21):7260–9. https://doi.org/10.1158/1078-0432.CCR-04-0872.

    Article  CAS  PubMed  Google Scholar 

  57. Maier KP. Cirrhosis of the liver as a precancerous condition. Praxis (Bern 1994). 1998;87(44):1462–5.

    CAS  Google Scholar 

  58. Singal AG, El-Serag HB. Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice. Clin Gastroenterol Hepatol. 2015;13(12):2140–51. https://doi.org/10.1016/j.cgh.2015.08.014.

    Article  PubMed  PubMed Central  Google Scholar 

  59. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27. https://doi.org/10.1056/NEJMra1001683.

    Article  CAS  PubMed  Google Scholar 

  60. Affo S, Yu LX, Schwabe RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu Rev Pathol. 2017;12:153–86. https://doi.org/10.1146/annurev-pathol-052016-100322.

    Article  CAS  PubMed  Google Scholar 

  61. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  62. Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–9. https://doi.org/10.1038/nm.2328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H, et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology. 2015;62(2):481–95. https://doi.org/10.1002/hep.27822.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao W, Su W, Kuang P, Zhang L, Liu J, Yin Z, et al. The role of hepatic stellate cells in the regulation of T-cell function and the promotion of hepatocellular carcinoma. Int J Oncol. 2012;41(2):457–64. https://doi.org/10.3892/ijo.2012.1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao W, Zhang L, Yin Z, Su W, Ren G, Zhou C, et al. Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer. 2011;129(11):2651–61. https://doi.org/10.1002/ijc.25920.

    Article  CAS  PubMed  Google Scholar 

  66. Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y, et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 2018;9(4):422. https://doi.org/10.1038/s41419-018-0458-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Z, Li X, Sun W, Yue S, Yang J, Li J, et al. Loss of exosomal miR-320a from cancer-associated fibroblasts contributes to HCC proliferation and metastasis. Cancer Lett. 2017;397:33–42. https://doi.org/10.1016/j.canlet.2017.03.004.

    Article  CAS  PubMed  Google Scholar 

  68. Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology. 2018;67(3):940–54. https://doi.org/10.1002/hep.29586.

    Article  CAS  PubMed  Google Scholar 

  69. Torimura T, Ueno T, Kin M, Harada R, Taniguchi E, Nakamura T, et al. Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma. J Hepatol. 2004;40(5):799–807. https://doi.org/10.1016/j.jhep.2004.01.027.

    Article  CAS  PubMed  Google Scholar 

  70. Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K, Osterreicher CH, et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology. 2008;135(5):1729–38. https://doi.org/10.1053/j.gastro.2008.07.065.

    Article  CAS  PubMed  Google Scholar 

  71. Lin N, Chen Z, Lu Y, Li Y, Hu K, Xu R. Role of activated hepatic stellate cells in proliferation and metastasis of hepatocellular carcinoma. Hepatol Res. 2015;45(3):326–36. https://doi.org/10.1111/hepr.12356.

    Article  CAS  PubMed  Google Scholar 

  72. Santamato A, Fransvea E, Dituri F, Caligiuri A, Quaranta M, Niimi T, et al. Hepatic stellate cells stimulate HCC cell migration via laminin-5 production. Clin Sci (Lond). 2011;121(4):159–68. https://doi.org/10.1042/CS20110002.

    Article  CAS  Google Scholar 

  73. Okabe H, Beppu T, Ueda M, Hayashi H, Ishiko T, Masuda T, et al. Identification of CXCL5/ENA-78 as a factor involved in the interaction between cholangiocarcinoma cells and cancer-associated fibroblasts. Int J Cancer. 2012;131(10):2234–41. https://doi.org/10.1002/ijc.27496.

    Article  CAS  PubMed  Google Scholar 

  74. Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 2018;9(1):191. https://doi.org/10.1038/s41467-017-02583-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jiang J, Ye F, Yang X, Zong C, Gao L, Yang Y, et al. Peri-tumor associated fibroblasts promote intrahepatic metastasis of hepatocellular carcinoma by recruiting cancer stem cells. Cancer Lett. 2017;404:19–28. https://doi.org/10.1016/j.canlet.2017.07.006.

    Article  CAS  PubMed  Google Scholar 

  76. Liu C, Liu L, Chen X, Cheng J, Zhang H, Zhang C, et al. LSD1 stimulates cancer-associated fibroblasts to drive Notch3-dependent self-renewal of liver cancer stem-like cells. Cancer Res. 2018;78(4):938–49. https://doi.org/10.1158/0008-5472.CAN-17-1236.

    Article  CAS  PubMed  Google Scholar 

  77. Rhee H, Kim HY, Choi JH, Woo HG, Yoo JE, Nahm JH, et al. Keratin 19 expression in hepatocellular carcinoma is regulated by fibroblast-derived HGF via a MET-ERK1/2-AP1 and SP1 Axis. Cancer Res. 2018;78(7):1619–31. https://doi.org/10.1158/0008-5472.CAN-17-0988.

    Article  CAS  PubMed  Google Scholar 

  78. Kim H, Choi GH, Na DC, Ahn EY, Kim GI, Lee JE, et al. Human hepatocellular carcinomas with “Stemness”-related marker expression: keratin 19 expression and a poor prognosis. Hepatology. 2011;54(5):1707–17. https://doi.org/10.1002/hep.24559.

    Article  CAS  PubMed  Google Scholar 

  79. Coulouarn C, Corlu A, Glaise D, Guenon I, Thorgeirsson SS, Clement B. Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res. 2012;72(10):2533–42. https://doi.org/10.1158/0008-5472.CAN-11-3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ju MJ, Qiu SJ, Fan J, Xiao YS, Gao Q, Zhou J, et al. Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol. 2009;131(4):498–510. https://doi.org/10.1309/AJCP86PPBNGOHNNL.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang DY, Goossens N, Guo J, Tsai MC, Chou HI, Altunkaynak C, et al. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut. 2016;65(10):1754–64. https://doi.org/10.1136/gutjnl-2015-309655.

    Article  CAS  PubMed  Google Scholar 

  82. Pupulim LF, Vilgrain V, Ronot M, Becker CD, Breguet R, Terraz S. Hepatic lymphatics: anatomy and related diseases. Abdom Imaging. 2015;40(6):1997–2011. https://doi.org/10.1007/s00261-015-0350-y.

    Article  PubMed  Google Scholar 

  83. Lund AW, Wagner M, Fankhauser M, Steinskog ES, Broggi MA, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126(9):3389–402. https://doi.org/10.1172/JCI79434.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Swartz MA. Immunomodulatory roles of lymphatic vessels in cancer progression. Cancer Immunol Res. 2014;2(8):701–7. https://doi.org/10.1158/2326-6066.CIR-14-0115.

    Article  CAS  PubMed  Google Scholar 

  85. Lukacs-Kornek V, Malhotra D, Fletcher AL, Acton SE, Elpek KG, Tayalia P, et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol. 2011;12(11):1096–104. https://doi.org/10.1038/ni.2112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fletcher AL, Lukacs-Kornek V, Reynoso ED, Pinner SE, Bellemare-Pelletier A, Curry MS, et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J Exp Med. 2010;207(4):689–97. https://doi.org/10.1084/jem.20092642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rouhani SJ, Eccles JD, Riccardi P, Peske JD, Tewalt EF, Cohen JN, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771. https://doi.org/10.1038/ncomms7771.

    Article  CAS  PubMed  Google Scholar 

  88. Vollmar B, Wolf B, Siegmund S, Katsen AD, Menger MD. Lymph vessel expansion and function in the development of hepatic fibrosis and cirrhosis. Am J Pathol. 1997;151(1):169–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamauchi Y, Michitaka K, Onji M. Morphometric analysis of lymphatic and blood vessels in human chronic viral liver diseases. Am J Pathol. 1998;153(4):1131–7. https://doi.org/10.1016/S0002-9440(10)65657-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yokomori H, Oda M, Kaneko F, Kawachi S, Tanabe M, Yoshimura K, et al. Lymphatic marker podoplanin/D2-40 in human advanced cirrhotic liver--re-evaluations of microlymphatic abnormalities. BMC Gastroenterol. 2010;10:131. https://doi.org/10.1186/1471-230X-10-131.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Limatola E, Filosa S. Exogenous vitellogenesis and micropinocytosis in the lizard, Podarcis sicula, treated with follicle-stimulating hormone. Gen Comp Endocrinol. 1989;75(2):165–76.

    Article  CAS  PubMed  Google Scholar 

  92. Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science. 2010;328(5979):749–52. https://doi.org/10.1126/science.1185837.

    Article  CAS  PubMed  Google Scholar 

  93. Xiang Z, Zeng Z, Tang Z, Fan J, Sun H, Wu W, et al. Increased expression of vascular endothelial growth factor-C and nuclear CXCR4 in hepatocellular carcinoma is correlated with lymph node metastasis and poor outcome. Cancer J. 2009;15(6):519–25. https://doi.org/10.1097/PPO.0b013e3181c6aa6b.

    Article  PubMed  Google Scholar 

  94. Yamaguchi R, Yano H, Nakashima O, Akiba J, Nishida N, Kurogi M, et al. Expression of vascular endothelial growth factor-C in human hepatocellular carcinoma. J Gastroenterol Hepatol. 2006;21(1 Pt 1):152–60. https://doi.org/10.1111/j.1440-1746.2005.04217.x.

    Article  CAS  PubMed  Google Scholar 

  95. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166(1):21–45. https://doi.org/10.1016/j.cell.2016.06.028.

    Article  CAS  PubMed  Google Scholar 

  96. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2018; https://doi.org/10.1038/s41580-018-0080-4.

  97. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73. https://doi.org/10.1038/nrc2620.

    Article  CAS  PubMed  Google Scholar 

  98. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119(6):1438–49. https://doi.org/10.1172/JCI38019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yan L, Xu F, Dai CL. Relationship between epithelial-to-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma. J Exp Clin Cancer Res. 2018;37(1):203. https://doi.org/10.1186/s13046-018-0887-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764–74. https://doi.org/10.1038/sj.onc.1208927.

    Article  CAS  PubMed  Google Scholar 

  101. Choi SS, Diehl AM. Epithelial-to-mesenchymal transitions in the liver. Hepatology. 2009;50(6):2007–13. https://doi.org/10.1002/hep.23196.

    Article  CAS  PubMed  Google Scholar 

  102. Zhai B, Yan HX, Liu SQ, Chen L, Wu MC, Wang HY. Reduced expression of E-cadherin/catenin complex in hepatocellular carcinomas. World J Gastroenterol. 2008;14(37):5665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Battaglia S, Benzoubir N, Nobilet S, Charneau P, Samuel D, Zignego AL, et al. Liver cancer-derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition. PLoS One. 2009;4(2):e4355. https://doi.org/10.1371/journal.pone.0004355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 2008;68(7):2391–9. https://doi.org/10.1158/0008-5472.CAN-07-2460.

    Article  CAS  PubMed  Google Scholar 

  105. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90. https://doi.org/10.1056/NEJMoa0708857.

    Article  CAS  PubMed  Google Scholar 

  106. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–73. https://doi.org/10.1016/S0140-6736(18)30207-1.

    Article  CAS  PubMed  Google Scholar 

  107. Sui H, Ma N, Wang Y, Li H, Liu X, Su Y, et al. Anti-PD-1/PD-L1 therapy for non-small-cell lung cancer: toward personalized medicine and combination strategies. J Immunol Res. 2018;2018:6984948. https://doi.org/10.1155/2018/6984948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Herzberg B, Fisher DE. Metastatic melanoma and immunotherapy. Clin Immunol. 2016;172:105–10. https://doi.org/10.1016/j.clim.2016.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Killock D. Immunotherapy: Nivolumab keeps HCC in check and opens avenues for checkmate. Nat Rev Clin Oncol. 2017;14(7):392. https://doi.org/10.1038/nrclinonc.2017.70.

    Article  PubMed  Google Scholar 

  110. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–52. https://doi.org/10.1016/S1470-2045(18)30351-6.

    Article  PubMed  Google Scholar 

  111. Shang N, Figini M, Shangguan J, Wang B, Sun C, Pan L, et al. Dendritic cells based immunotherapy. Am J Cancer Res. 2017;7(10):2091–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology. 2009;49(1):124–32. https://doi.org/10.1002/hep.22626.

    Article  PubMed  Google Scholar 

  113. El Ansary M, Mogawer S, Elhamid SA, Alwakil S, Aboelkasem F, Sabaawy HE, et al. Immunotherapy by autologous dendritic cell vaccine in patients with advanced HCC. J Cancer Res Clin Oncol. 2013;139(1):39–48. https://doi.org/10.1007/s00432-012-1298-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Baumert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saviano, A. et al. (2019). Stromal and Immune Drivers of Hepatocarcinogenesis. In: Hoshida, Y. (eds) Hepatocellular Carcinoma. Molecular and Translational Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-21540-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21540-8_15

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-21539-2

  • Online ISBN: 978-3-030-21540-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics