Skip to main content

Molecular Alterations and Heterogeneity in Hepatocellular Carcinoma

  • Chapter
  • First Online:
Book cover Hepatocellular Carcinoma

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Hepatocellular carcinoma (HCC) is a fatal disease without effective treatment. In recent decades, numbers of molecular profiling studies have improved our understanding of critical oncogenic events driving hepatocarcinogenesis and identified potential molecular targets for drug development in HCC. However, these studies have also revealed the heterogeneous nature of this disease and underscore the impact of intertumoral and/or intratumoral heterogeneity of HCC on a successful treatment. In this chapter, we will summarize common HCC-associated molecular alterations, review data related to molecular heterogeneity, understand what drives the evolution of HCC heterogeneity and how this knowledge would lead us to generate new research directions, and improve the outcome of HCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong MCS, Jiang JY, Goggins WB, Liang M, Fang Y, Fung FDH, et al. International incidence and mortality trends of liver cancer: a global profile. Sci Rep. 2017;7:45846. https://doi.org/10.1038/srep45846. https://www.nature.com/articles/srep45846#supplementary-information.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. ClinicalTrials.gov. Interventional studies | hepatocellular carcinoma. Bethesda (MD): National Library of Medicine (US); 2018. https://www.clinicaltrials.gov/ct2/results?cond=Hepatocellular+Carcinoma&age_v=&gndr=&type=Intr&rslt=&Search=Apply. Accessed June 14 2018.

    Google Scholar 

  3. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.

    Article  CAS  PubMed  Google Scholar 

  4. Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66. https://doi.org/10.1016/S0140-6736(16)32453-9.

    Article  CAS  PubMed  Google Scholar 

  5. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–73. https://doi.org/10.1016/S0140-6736(18)30207-1.

    Article  CAS  PubMed  Google Scholar 

  6. Merriam-Webster. “Heterogeneity.”. 2018. www.merriam-webster.com/dictionary/heterogeneity. Accessed 14 June 2018.

  7. Edmondson H. Tumors of the liver and intrahepatic bile ducts, atlas of tumors pathology. Washington, DC: Armed Forces Institute of Pathology; 1958.

    Google Scholar 

  8. Kenmochi K, Sugihara S, Kojiro M. Relationship of histologic grade of hepatocellular carcinoma (HCC) to tumor size, and demonstration of tumor cells of multiple different grades in single small HCC. Liver. 1987;7(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  9. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446(7132):153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagy R, Sweet K, Eng C. Highly penetrant hereditary cancer syndromes. Oncogene. 2004;23:6445. https://doi.org/10.1038/sj.onc.1207714.

    Article  CAS  PubMed  Google Scholar 

  11. Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science (New York, NY). 2015;349(6255):1483–9. https://doi.org/10.1126/science.aab4082.

    Article  CAS  Google Scholar 

  12. Shibata T, Aburatani H. Exploration of liver cancer genomes. Nat Rev Gastroenterol Hepatol. 2014;11(6):340.

    Article  CAS  PubMed  Google Scholar 

  13. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7(2):85–97. https://doi.org/10.1038/nrg1767.

    Article  CAS  PubMed  Google Scholar 

  14. Shlien A, Malkin D. Copy number variations and cancer. Genome Med. 2009;1(6):62. https://doi.org/10.1186/gm62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang K, Lim HY, Shi S, Lee J, Deng S, Xie T, et al. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology. 2013;58(2):706–17. https://doi.org/10.1002/hep.26402.

    Article  CAS  PubMed  Google Scholar 

  16. Schlaeger C, Longerich T, Schiller C, Bewerunge P, Mehrabi A, Toedt G, et al. Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology. 2008;47(2):511–20.

    Article  CAS  PubMed  Google Scholar 

  17. Katoh H, Ojima H, Kokubu A, Saito S, Kondo T, Kosuge T, et al. Genetically distinct and clinically relevant classification of hepatocellular carcinoma: putative therapeutic targets. Gastroenterology. 2007;133(5):1475–86. https://doi.org/10.1053/j.gastro.2007.08.038.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao X, Parpart S, Takai A, Roessler S, Budhu A, Yu Z, et al. Integrative genomics identifies YY1AP1 as an oncogenic driver in EpCAM(+) AFP(+) hepatocellular carcinoma. Oncogene. 2015;34(39):5095–104. https://doi.org/10.1038/onc.2014.438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, et al. Annual report to the nation on the status of cancer, Part I: national cancer statistics. Cancer. 2018; https://doi.org/10.1002/cncr.31551.

  20. Totoki Y, Tatsuno K, Covington KR, Ueda H, Creighton CJ, Kato M, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014;46(12):1267–73. https://doi.org/10.1038/ng.3126.

    Article  CAS  PubMed  Google Scholar 

  21. Totoki Y, Tatsuno K, Yamamoto S, Arai Y, Hosoda F, Ishikawa S, et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet. 2011;43(5):464–9.

    Article  CAS  PubMed  Google Scholar 

  22. Fujimoto A, Furuta M, Totoki Y, Tsunoda T, Kato M, Shiraishi Y, et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet. 2016;48(5):500–9. https://doi.org/10.1038/ng.3547.

    Article  CAS  PubMed  Google Scholar 

  23. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012;44:760–4.

    Article  CAS  PubMed  Google Scholar 

  24. The Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327–41 e23. https://doi.org/10.1016/j.cell.2017.05.046.

    Article  CAS  PubMed Central  Google Scholar 

  25. Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P, et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med. 2013;5(197):197ra01. https://doi.org/10.1126/scitranslmed.3006086.

    Article  CAS  Google Scholar 

  26. Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature. 1991;350:427–8.

    Article  CAS  PubMed  Google Scholar 

  27. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44(6):694–8. https://doi.org/10.1038/ng.2256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schulze K, Imbeaud S, Letouze E, Alexandrov LB, Calderaro J, Rebouissou S, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47(5):505–11. https://doi.org/10.1038/ng.3252. http://www.nature.com/ng/journal/v47/n5/abs/ng.3252.html#supplementary-information.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27. https://doi.org/10.1056/NEJMra1001683.

    Article  CAS  PubMed  Google Scholar 

  30. Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012;44(7):765.

    Article  CAS  PubMed  Google Scholar 

  31. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  CAS  PubMed  Google Scholar 

  32. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58. https://doi.org/10.1053/j.gastro.2007.05.022.

    Article  CAS  PubMed  Google Scholar 

  33. Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28(40):3526–36. https://doi.org/10.1038/onc.2009.211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008. https://doi.org/10.1101/cshperspect.a001008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Soussi T. The TP53 gene network in a postgenomic era. Hum Mutat. 2014;35(6):641–2. https://doi.org/10.1002/humu.22562.

    Article  CAS  PubMed  Google Scholar 

  36. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature. 1998;396(6706):84–8. https://doi.org/10.1038/23962.

    Article  CAS  PubMed  Google Scholar 

  37. Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther. 2009;8(6):1409–20. https://doi.org/10.1158/1535-7163.mct-08-0860.

    Article  CAS  PubMed  Google Scholar 

  38. Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer. 2011;11:726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carracedo A, Pandolfi PP. The PTEN–PI3K pathway: of feedbacks and cross-talks. Oncogene. 2008;27:5527. https://doi.org/10.1038/onc.2008.247.

    Article  CAS  PubMed  Google Scholar 

  40. Venugopal R, Jaiswal AK. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci. 1996;93(25):14960–5. https://doi.org/10.1073/pnas.93.25.14960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20. https://doi.org/10.1016/j.cmet.2007.10.002.

    Article  CAS  PubMed  Google Scholar 

  42. Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16:635. https://doi.org/10.1038/nrc.2016.77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li L, Che L, Tharp KM, Park HM, Pilo MG, Cao D, et al. Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Hepatology. 2016;63(6):1900–13. https://doi.org/10.1002/hep.28508.

    Article  CAS  PubMed  Google Scholar 

  44. Kim MJ, Choi YK, Park SY, Jang SY, Lee JY, Ham HJ, et al. PPARdelta Reprograms Glutamine Metabolism in Sorafenib-Resistant HCC. Mol Cancer Res. 2017;15(9):1230–42. https://doi.org/10.1158/1541-7786.mcr-17-0061.

    Article  CAS  PubMed  Google Scholar 

  45. Beyoglu D, Idle JR. Metabolomics and its potential in drug development. Biochem Pharmacol. 2013;85(1):12–20. https://doi.org/10.1016/j.bcp.2012.08.013.

    Article  CAS  PubMed  Google Scholar 

  46. Patterson AD, Maurhofer O, Beyoglu D, Lanz C, Krausz KW, Pabst T, et al. Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res. 2011;71:6590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yin P, Wan D, Zhao C, Chen J, Zhao X, Wang W, et al. A metabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma by using RP-LC and HILIC coupled with mass spectrometry. Mol Biosyst. 2009;5:868–76.

    Article  CAS  PubMed  Google Scholar 

  48. Budhu A, Roessler S, Zhao X, Yu Z, Forgues M, Ji J, et al. Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. Gastroenterology. 2013;144(5):1066–75 e1. https://doi.org/10.1053/j.gastro.2013.01.054.

    Article  CAS  PubMed  Google Scholar 

  49. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94. https://doi.org/10.1038/nrclinonc.2017.166.

    Article  CAS  PubMed  Google Scholar 

  50. Dragani TA. Risk of HCC: genetic heterogeneity and complex genetics. J Hepatol. 2010;52(2):252–7. https://doi.org/10.1016/j.jhep.2009.11.015.

    Article  CAS  PubMed  Google Scholar 

  51. Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13(2):123–35. https://doi.org/10.1038/nrc3449.

    Article  CAS  PubMed  Google Scholar 

  52. Neuveut C, Wei Y, Buendia MA. Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol. 2010;52(4):594–604. https://doi.org/10.1016/j.jhep.2009.10.033.

    Article  CAS  PubMed  Google Scholar 

  53. Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet. 2011;43(9):828–9. https://doi.org/10.1038/ng.903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Villar S, Ortiz-Cuaran S, Abedi-Ardekani B, Gouas D, Nogueira da Costa A, Plymoth A, et al. Aflatoxin-induced TP53 R249S mutation in hepatocellular carcinoma in Thailand: association with tumors developing in the absence of liver cirrhosis. PLoS One. 2012;7(6):e37707. https://doi.org/10.1371/journal.pone.0037707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morgan TR, Mandayam S, Jamal MM. Alcohol and hepatocellular carcinoma. Gastroenterology. 2004;127(5 Suppl 1):S87–96.

    Article  CAS  PubMed  Google Scholar 

  56. Kuper H, Tzonou A, Kaklamani E, Hsieh CC, Lagiou P, Adami HO, et al. Tobacco smoking, alcohol consumption and their interaction in the causation of hepatocellular carcinoma. Int J Cancer. 2000;85(4):498–502.

    Article  CAS  PubMed  Google Scholar 

  57. Humans IWGotEoCRt. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr Eval Carcinog Risks Hum. 2002;82:1–556.

    Google Scholar 

  58. Frank SA. Genetic predisposition to cancer — insights from population genetics. Nat Rev Genet. 2004;5:764. https://doi.org/10.1038/nrg1450.

    Article  CAS  PubMed  Google Scholar 

  59. Fairbanks KD, Tavill AS. Liver disease in alpha 1-antitrypsin deficiency: a review. Am J Gastroenterol. 2008;103(8):2136–41; quiz 42. https://doi.org/10.1111/j.1572-0241.2008.01955.x.

    Article  CAS  PubMed  Google Scholar 

  60. Weinberg AG, Mize CE, Worthen HG. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr. 1976;88(3):434–8.

    Article  CAS  PubMed  Google Scholar 

  61. Elmberg M, Hultcrantz R, Ekbom A, Brandt L, Olsson S, Olsson R, et al. Cancer risk in patients with hereditary hemochromatosis and in their first-degree relatives. Gastroenterology. 2003;125(6):1733–41.

    Article  PubMed  Google Scholar 

  62. Fracanzani AL, Taioli E, Sampietro M, Fatta E, Bertelli C, Fiorelli G, et al. Liver cancer risk is increased in patients with porphyria cutanea tarda in comparison to matched control patients with chronic liver disease. J Hepatol. 2001;35(4):498–503.

    Article  CAS  PubMed  Google Scholar 

  63. Elzouki AN, Eriksson S. Risk of hepatobiliary disease in adults with severe alpha 1-antitrypsin deficiency (PiZZ): is chronic viral hepatitis B or C an additional risk factor for cirrhosis and hepatocellular carcinoma? Eur J Gastroenterol Hepatol. 1996;8(10):989–94.

    Article  CAS  PubMed  Google Scholar 

  64. Kowdley KV. Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology. 2004;127(5 Suppl 1):S79–86.

    Article  CAS  PubMed  Google Scholar 

  65. Andersson C, Bjersing L, Lithner F. The epidemiology of hepatocellular carcinoma in patients with acute intermittent porphyria. J Intern Med. 1996;240(4):195–201. https://doi.org/10.1046/j.1365-2796.1996.21847000.x.

    Article  CAS  PubMed  Google Scholar 

  66. Mantovani A, Targher G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: spotlight on nonalcoholic fatty liver disease. Ann Transl Med. 2017;5(13):270. https://doi.org/10.21037/atm.2017.04.41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cholankeril G, Patel R, Khurana S, Satapathy SK. Hepatocellular carcinoma in non-alcoholic steatohepatitis: current knowledge and implications for management. World J Hepatol. 2017;9(11):533–43. https://doi.org/10.4254/wjh.v9.i11.533.

    Article  PubMed  PubMed Central  Google Scholar 

  68. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76. https://doi.org/10.1053/j.gastro.2007.04.061.

    Article  CAS  PubMed  Google Scholar 

  69. Hassan MM, Kaseb A, Li D, Patt YZ, Vauthey JN, Thomas MB, Curley SA, Spitz MR, Sherman SI, Abdalla EK, Davila M. Association between hypothyroidism and hepatocellular carcinoma: a case-control study in the United States. Hepatology. 2009;49(5):1563–70. https://doi.org/10.1002/hep.22793.

    Article  PubMed  Google Scholar 

  70. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352(8):786–92.

    Article  CAS  PubMed  Google Scholar 

  71. van’t Veer LJ, Dai H, Van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  Google Scholar 

  72. Boyault S, Rickman DS, de Reynies A, Balabaud C, Rebouissou S, Jeannot E, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45(1):42–52. https://doi.org/10.1002/hep.21467.

    Article  CAS  PubMed  Google Scholar 

  73. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69(18):7385–92. https://doi.org/10.1158/0008-5472.CAN-09-1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chaisaingmongkol J, Budhu A, Dang H, Rabibhadana S, Pupacdi B, Kwon SM, et al. Common molecular subtypes among Asian hepatocellular carcinoma and cholangiocarcinoma. Cancer Cell. 2017;32(1):57–70 e3. https://doi.org/10.1016/j.ccell.2017.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Woo HG, Choi J-H, Yoon S, Jee BA, Cho EJ, Lee J-H, et al. Integrative analysis of genomic and epigenomic regulation of the transcriptome in liver cancer. Nat Commun. 2017;8(1):839. https://doi.org/10.1038/s41467-017-00991-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res. 2018;24(6):1248–59. https://doi.org/10.1158/1078-0432.ccr-17-0853.

    Article  CAS  PubMed  Google Scholar 

  77. Xue R, Li J, Bai F, Wang X, Ji J, Lu Y. A race to uncover a panoramic view of primary liver cancer. Cancer Biol Med. 2017;14(4):335–40. https://doi.org/10.20892/j.issn.2095-3941.2017.0112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med. 2003;9(4):416–23.

    Article  CAS  PubMed  Google Scholar 

  79. Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T, et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology. 2004;40(3):667–76. https://doi.org/10.1002/hep.20375.

    Article  CAS  PubMed  Google Scholar 

  80. Tan PS, Nakagawa S, Goossens N, Venkatesh A, Huang T, Ward SC, et al. Clinicopathological indices to predict hepatocellular carcinoma molecular classification. Liver Int. 2016;36(1):108–18. https://doi.org/10.1111/liv.12889.

    Article  CAS  PubMed  Google Scholar 

  81. Calderaro J, Couchy G, Imbeaud S, Amaddeo G, Letouze E, Blanc JF, et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol. 2017;67(4):727–38. https://doi.org/10.1016/j.jhep.2017.05.014.

    Article  CAS  PubMed  Google Scholar 

  82. Kurebayashi Y, Ojima H, Tsujikawa H, Kubota N, Maehara J, Abe Y, et al. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology. 2018;68(3):1025–41. https://doi.org/10.1002/hep.29904.

    Article  CAS  PubMed  Google Scholar 

  83. Lau SK, Prakash S, Geller SA, Alsabeh R. Comparative immunohistochemical profile of hepatocellular carcinoma, cholangiocarcinoma, and metastatic adenocarcinoma. Hum Pathol. 2002;33(12):1175–81. https://doi.org/10.1053/hupa.2002.130104.

    Article  PubMed  Google Scholar 

  84. Chen LD, Xu HX, Xie XY, Xie XH, Xu ZF, Liu GJ, et al. Intrahepatic cholangiocarcinoma and hepatocellular carcinoma: differential diagnosis with contrast-enhanced ultrasound. Eur Radiol. 2010;20(3):743–53. https://doi.org/10.1007/s00330-009-1599-8.

    Article  CAS  PubMed  Google Scholar 

  85. Man XB, Tang L, Zhang BH, Li SJ, Qiu XH, Wu MC, et al. Upregulation of Glypican-3 expression in hepatocellular carcinoma but downregulation in cholangiocarcinoma indicates its differential diagnosis value in primary liver cancers. Liver Int. 2005;25(5):962–6. https://doi.org/10.1111/j.1478-3231.2005.01100.x.

    Article  CAS  PubMed  Google Scholar 

  86. Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108:479. https://doi.org/10.1038/bjc.2012.581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Friemel J, Rechsteiner M, Frick L, Böhm F, Struckmann K, Egger M, et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res. 2015;21(8):1951–61.

    Article  CAS  PubMed  Google Scholar 

  88. Xue R, Li R, Guo H, Guo L, Su Z, Ni X, et al. Variable intra-tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma. Gastroenterology. 2016;150(4):998–1008. https://doi.org/10.1053/j.gastro.2015.12.033.

    Article  PubMed  Google Scholar 

  89. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 2016;26(3):304–19. https://doi.org/10.1038/cr.2016.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zheng H, Pomyen Y, Hernandez MO, Li C, Livak F, Tang W, et al. Single cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology. 2018; https://doi.org/10.1002/hep.29778.

  91. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11. https://doi.org/10.1038/35102167.

    Article  CAS  PubMed  Google Scholar 

  92. Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells. Mol Cancer. 2017;16:4. https://doi.org/10.1186/s12943-016-0572-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;27:1749–58.

    Article  CAS  PubMed  Google Scholar 

  94. Zheng YW, Tsuchida T, Shimao T, Li B, Takebe T, Zhang RR, et al. The CD133+CD44+ precancerous subpopulation of oval cells is a therapeutic target for hepatocellular carcinoma. Stem Cells Dev. 2014;23(18):2237–49. https://doi.org/10.1089/scd.2013.0577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13. https://doi.org/10.1038/nature10762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, et al. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res. 2008;68(5):1451–61.

    Article  CAS  PubMed  Google Scholar 

  97. Ji J, Wang XW. Identification of cancer stem cell-related microRNAs in hepatocellular carcinoma. Methods Mol Biol. 2012;826:163–75.

    Article  CAS  PubMed  Google Scholar 

  98. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases — elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25. https://doi.org/10.1016/j.coi.2014.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jimenez-Sanchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas HA, et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell. 2017;170(5):927–38.e20. https://doi.org/10.1016/j.cell.2017.07.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

  101. Zhu AX, Park JO, Ryoo BY, Yen CJ, Poon R, Pastorelli D, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015;16(7):859–70. https://doi.org/10.1016/S1470-2045(15)00050-9.

    Article  CAS  PubMed  Google Scholar 

  102. Zhu AX, Galle PR, Kudo M, Finn RS, Qin S, Xu Y, et al. A study of ramucirumab (LY3009806) versus placebo in patients with hepatocellular carcinoma and elevated baseline alpha-fetoprotein (REACH-2). J Clin Oncol. 2018;36(4_suppl):TPS538-TPS. https://doi.org/10.1200/JCO.2018.36.4_suppl.TPS538.

    Article  Google Scholar 

  103. Cunanan KM, Iasonos A, Shen R, Begg CB, Gönen M. An efficient basket trial design. Stat Med. 2017;36(10):1568–79. https://doi.org/10.1002/sim.7227.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Renfro LA, Sargent DJ. Statistical controversies in clinical research: basket trials, umbrella trials, and other master protocols: a review and examples. Ann Oncol. 2017;28(1):34–43. https://doi.org/10.1093/annonc/mdw413.

    Article  CAS  PubMed  Google Scholar 

  105. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. https://doi.org/10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Do K, O’Sullivan Coyne G, Chen AP. An overview of the NCI precision medicine trials-NCI MATCH and MPACT. Chin Clin Oncol. 2015;4(3):31. https://doi.org/10.3978/j.issn.2304-3865.2015.08.01.

    Article  PubMed  Google Scholar 

  107. Somasundaram R, Villanueva J, Herlyn M. Intratumoral heterogeneity as a therapy resistance mechanism: role of melanoma subpopulations. Adv Pharmacol (San Diego, Calif). 2012;65:335–59. https://doi.org/10.1016/B978-0-12-397927-8.00011-7.

    Article  CAS  Google Scholar 

  108. Hectors SJ, Wagner M, Bane O, Besa C, Lewis S, Remark R, et al. Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Sci Rep. 2017;7(1):2452. https://doi.org/10.1038/s41598-017-02706-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun Y-F, Guo W, Xu Y, Shi Y-H, Gong Z-J, Ji Y, et al. Circulating tumor cells from different vascular sites exhibit spatial heterogeneity in epithelial and mesenchymal composition and distinct clinical significance in hepatocellular carcinoma. Clin Cancer Res. 2018;24(3):547–59. https://doi.org/10.1158/1078-0432.ccr-17-1063.

    Article  CAS  PubMed  Google Scholar 

  110. Qin C, Cao Q, Li P, Wang S, Wang J, Wang M, et al. The influence of genetic variants of sorafenib on clinical outcomes and toxic effects in patients with advanced renal cell carcinoma. Sci Rep. 2016;6:20089. https://doi.org/10.1038/srep20089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work is supported by the Intramural Research Program of the Center for Cancer Research of the U.S. National Cancer Institute (Z01 BC 01313 and Z01 BC 010877) and Taipei Veterans General Hospital-National Yang-Ming University Excellent Physician Scientist Cultivation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hung, M.H., Wang, X.W. (2019). Molecular Alterations and Heterogeneity in Hepatocellular Carcinoma. In: Hoshida, Y. (eds) Hepatocellular Carcinoma. Molecular and Translational Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-21540-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21540-8_14

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-21539-2

  • Online ISBN: 978-3-030-21540-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics