Skip to main content

Killing the Hofstadter Butterfly

  • Chapter
  • First Online:
Excursions in Ill-Condensed Quantum Matter

Part of the book series: Springer Theses ((Springer Theses))

  • 627 Accesses

Abstract

In the last chapter we looked at fractals, where the spatial dimension is itself not an integer. We looked at the construction of a topological model on such a system and found that one finds a fractal spectrum where the eigenenergies are self similar. Here we construct a system which is otherwise translationally invariant, but has a fractal spectrum. We then investigate—what happens to this system if we remove bonds randomly?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1492–1505

    Article  ADS  Google Scholar 

  2. Lee PA, Ramakrishnan TV (1985) Disordered electronic systems. Rev Mod Phys 57:287–337

    Article  Google Scholar 

  3. Kramer B, MacKinnon A (1993) Localization: theory and experiment. Rep Prog Phys 56(12):1469

    Article  ADS  Google Scholar 

  4. Janssen M (1998) Statistics and scaling in disordered mesoscopic electron systems. Phys Rep 295(12):1–91

    Article  ADS  Google Scholar 

  5. Evers F, Mirlin AD (2008) Anderson transitions. Rev Mod Phys 80:1355–1417

    Article  ADS  Google Scholar 

  6. Abrahams E, Kravchenko SV, Sarachik MP (2001) Metallic behavior and related phenomena in two dimensions. Rev Mod Phys 73:251–266

    Article  ADS  Google Scholar 

  7. Klitzing KV, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett 45:494–497

    Article  ADS  Google Scholar 

  8. Stormer HL, Tsui DC, Gossard AC (1999) The fractional quantum hall effect. Rev Mod Phys 71:S298–S305

    Article  MathSciNet  Google Scholar 

  9. Hofstadter DR (1976) Energy levels and wave functions of bloch electrons in rational and irrational magnetic fields. Phys Rev B 14:2239–2249

    Article  ADS  Google Scholar 

  10. Aidelsburger M, Atala M, Lohse M, Barreiro JT, Paredes B, Bloch I (2013) Realization of the hofstadter hamiltonian with ultracold atoms in optical lattices. Phys Rev Lett 111:185301

    Article  ADS  Google Scholar 

  11. Miyake H, Siviloglou GA, Kennedy CJ, Burton WC, Ketterle W (2013) Realizing the harper hamiltonian with laser-assisted tunneling in optical lattices. Phys Rev Lett 111:185302

    Article  ADS  Google Scholar 

  12. Hunt B, Sanchez-Yamagishi JD, Young AF, Yankowitz M, LeRoy BJ, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P et al (2013) Massive dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340(6139):1427–1430

    Article  ADS  Google Scholar 

  13. Yu GL, Gorbachev RV, Tu JS, Kretinin AV, Cao Y, Jalil R, Withers F, Ponomarenko LA, Piot BA, Potemski M et al (2014) Hierarchy of Hofstadter states and replica quantum hall ferromagnetism in graphene superlattices. Nat Phys 10:525–529

    Article  Google Scholar 

  14. Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M (1982) Quantized hall conductance in a two-dimensional periodic potential. Phys Rev Lett 49:405–408

    Article  ADS  Google Scholar 

  15. Osadchy D, Avron JE (2001) Hofstadter butterfly as quantum phase diagram. J Math Phys 42(12):5665–5671

    Article  MathSciNet  ADS  Google Scholar 

  16. Chalker JT, Coddington PD (1988) Percolation, quantum tunnelling and the integer hall effect. J Phys C: Solid State Phys 21(14):2665

    Article  ADS  Google Scholar 

  17. Cain P, Römer RA, Schreiber M, Raikh ME (2001) Integer quantum hall transition in the presence of a long-range-correlated quenched disorder. Phys Rev B 64:235326

    Article  ADS  Google Scholar 

  18. Galstyan AG, Raikh ME (1997) Localization and conductance fluctuations in the integer quantum hall effect: real-space renormalization-group approach. Phys Rev B 56:1422–1429

    Article  ADS  Google Scholar 

  19. Kramer B, Ohtsuki T, Kettemann S (2005) Random network models and quantum phase transitions in two dimensions. Phys Rep 417(56):211–342

    Article  MathSciNet  ADS  Google Scholar 

  20. Huckestein B (1995) Scaling theory of the integer quantum hall effect. Rev Mod Phys 67:357–396

    Article  ADS  Google Scholar 

  21. Ortuño M, Somoza AM, Mkhitaryan VV, Raikh ME (2011) Phase diagram of the weak-magnetic-field quantum hall transition quantified from classical percolation. Phys Rev B 84:165314

    Article  ADS  Google Scholar 

  22. Dolgopolov VT (2014) Integer quantum hall effect and related phenomena. Phys-Uspekhi 57(2):105

    Article  ADS  Google Scholar 

  23. Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV (1979) Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys Rev Lett 42:673–676

    Article  ADS  Google Scholar 

  24. Khmelnitskii D (1984) Quantum hall effect and additional oscillations of conductivity in weak magnetic fields. Phys Lett A 106(4):182–183

    Article  ADS  Google Scholar 

  25. Laughlin RB (1984) Levitation of extended-state bands in a strong magnetic field. Phys Rev Lett 52:2304–2304

    Article  ADS  Google Scholar 

  26. Yang K, Bhatt RN (1996) Floating of extended states and localization transition in a weak magnetic field. Phys Rev Lett 76:1316–1319

    Article  ADS  Google Scholar 

  27. Sheng DN, Weng ZY (1997) Disappearance of integer quantum hall effect. Phys Rev Lett 78:318–321

    Article  ADS  Google Scholar 

  28. Pruisken AMM (1985) Dilute instanton gas as the precursor to the integral quantum hall effect. Phys Rev B 32:2636–2639

    Article  ADS  Google Scholar 

  29. Sheng DN, Weng ZY (1998) New universality of the metal-insulator transition in an integer quantum hall effect system. Phys Rev Lett 80:580–583

    Article  ADS  Google Scholar 

  30. Sheng DN, Weng ZY (2000) Phase diagram of the integer quantum hall effect. Phys Rev B 62:15363–15366

    Article  ADS  Google Scholar 

  31. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    Article  Google Scholar 

  32. Mookerjee A, Saha-Dasgupta T, Dasgupta I (2009) Quantum transmittance through random media. In: Quantum and semi-classical percolation and breakdown in disordered solids, vol 762. Springer, Berlin, p 83

    Google Scholar 

  33. Koslowski T, von Niessen W (1990) Mobility edges for the quantum percolation problem in two and three dimensions. Phys Rev B 42:10342–10347

    Article  ADS  Google Scholar 

  34. Islam MF, Nakanishi H (2008) Localization-delocalization transition in a two-dimensional quantum percolation model. Phys Rev E 77:061109

    Article  ADS  Google Scholar 

  35. Gong L, Tong P (2009) Localization-delocalization transitions in a two-dimensional quantum percolation model: von Neumann entropy studies. Phys Rev B 80:174205

    Article  ADS  Google Scholar 

  36. Dillon SB, Nakanishi H (2014) Localization phase diagram of two-dimensional quantum percolation. Eur Phys J B 87(12):1–9

    Article  Google Scholar 

  37. Stauffer D, Aharony A (1991) Introduction to percolation theory. Taylor and Francis, London

    MATH  Google Scholar 

  38. Isichenko MB (1992) Percolation, statistical topography, and transport in random media. Rev Mod Phys 64:961–1043

    Article  MathSciNet  ADS  Google Scholar 

  39. Soukoulis CM, Grest GS (1991) Localization in two-dimensional quantum percolation. Phys Rev B 44:4685–4688

    Article  ADS  Google Scholar 

  40. Odagaki T, Lax M, Puri A (1983) Hopping conduction in the \(d\)-dimensional lattice bond-percolation problem. Phys Rev B 28:2755–2765

    Article  Google Scholar 

  41. Raghavan R, Mattis DC (1981) Eigenfunction localization in dilute lattices of various dimensionalities. Phys Rev B 23:4791–4793

    Article  ADS  Google Scholar 

  42. Shapir Y, Aharony A, Harris AB (1982) Localization and quantum percolation. Phys Rev Lett 49:486–489

    Article  MathSciNet  ADS  Google Scholar 

  43. Taylor JPG, MacKinnon A (1989) A study of the two-dimensional bond quantum percolation model. J Phys: Condens Matter 1(49):9963

    ADS  Google Scholar 

  44. Schmidtke D, Khodja A, Gemmer J (2014) Transport in tight-binding bond percolation models. Phys Rev E 90:032127

    Article  ADS  Google Scholar 

  45. Sanyal S, Damle K, Motrunich OI (2016) Vacancy-induced low-energy states in undoped graphene. Phys Rev Lett 117:116806

    Article  ADS  Google Scholar 

  46. Häfner V, Schindler J, Weik N, Mayer T, Balakrishnan S, Narayanan R, Bera S, Evers F (2014) Density of states in graphene with vacancies: Midgap power law and frozen multifractality. Phys Rev Lett 113:186802

    Article  ADS  Google Scholar 

  47. Ostrovsky PM, Protopopov IV, König EJ, Gornyi IV, Mirlin AD, Skvortsov MA (2014) Density of states in a two-dimensional chiral metal with vacancies. Phys Rev Lett 113:186803

    Article  ADS  Google Scholar 

  48. Zhu L, Wang X (2016) Singularity of density of states induced by random bond disorder in graphene. Phys Lett A 380:2233–2236

    Article  ADS  Google Scholar 

  49. Liu W-S, Lei X (2003) Integer quantum hall transitions in the presence of off-diagonal disorder. J Phys: Condens Matter 15(17):2693

    ADS  Google Scholar 

  50. Meir Y, Aharony A, Harris AB (1986) Quantum percolation in magnetic fields. Phys Rev Lett 56:976–979

    Article  ADS  Google Scholar 

  51. Yi-Fu Z, Yun-You Y, Yan J, Li S, Rui S, Dong-Ning S, Ding-Yu X (2013) Coupling-matrix approach to the Chern number calculation in disordered systems. Chin Phys B 22(11):117312

    Article  ADS  Google Scholar 

  52. Analytis JG, Blundell SJ, Ardavan A (2004) Landau levels, molecular orbitals, and the Hofstadter butterfly in finite systems. Am J Phys 72(5):613–618

    Article  ADS  Google Scholar 

  53. Weik N, Schindler J, Bera S, Solomon GC, Evers F (2016). Graphene with vacancies: supernumerary zero modes. ArXiv e-prints, arXiv:1603.00212

  54. Markoš P (2006) Numerical analysis of the anderson localization. Acta Phys Slovaca 56:561–685

    Google Scholar 

  55. Fradkin E (1991) Field theories of condensed matter systems, vol 7. Addison-Wesley, Redwood City

    MATH  Google Scholar 

  56. Niu Q, Thouless DJ, Wu Y-S (1985) Quantized hall conductance as a topological invariant. Phys Rev B 31:3372–3377

    Article  MathSciNet  ADS  Google Scholar 

  57. Dutta P, Maiti SK, Karmakar SN (2012) Integer quantum hall effect in a lattice model revisited: Kubo formalism. J Appl Phys 112(4):044306

    Article  ADS  Google Scholar 

  58. Analytis JG, Blundell SJ, Ardavan A (2005) Magnetic oscillations, disorder and the Hofstadter butterfly in finite systems. Synth Metals 154(13):265–268. Proceedings of the international conference on science and technology of synthetic metals Part III

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adhip Agarwala .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwala, A. (2019). Killing the Hofstadter Butterfly. In: Excursions in Ill-Condensed Quantum Matter. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-21511-8_5

Download citation

Publish with us

Policies and ethics