Skip to main content

Seeking Topological Phases in Fractals

  • Chapter
  • First Online:
Excursions in Ill-Condensed Quantum Matter

Part of the book series: Springer Theses ((Springer Theses))

  • 626 Accesses

Abstract

As we had seen in Table 1.1, the classification of topological systems is described by a tenfold scheme and a periodicity in spatial dimensions d. Notions of integral dimensions and bulk-boundary correspondence lies at the heart of the topological band theory [1,2,3,4]. A nontrivial invariant calculated for a periodic system signals existence of robust boundary states for the same system with a boundary. This correspondence is the progenitor of formulations of various invariants such as TKNN invariant (Chern number) [5], the Pfaffian and others (for a recent review see [3]) which lead to exotic boundary physics. However, not every system has a well defined “bulk” or “boundary”. Neither does every system have a well defined dimension. Is there a notion of a topological state in such systems? If yes, how can they be characterized?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasan MZ, Kane CL (2010) Colloquium: topological insulators. Rev Mod Phys 82:3045–3067

    Article  ADS  Google Scholar 

  2. Qi X-L, Zhang S-C (2011) Topological insulators and superconductors. Rev Mod Phys 83:1057–1110

    Article  ADS  Google Scholar 

  3. Chiu CK, Teo JCY, Schnyder AP, Ryu S (2016) Classification of topological quantum matter with symmetries. Rev Mod Phys 88:035005

    Google Scholar 

  4. Ludwig AWW (2016) Topological phases: classification of topological insulators and superconductors of non-interacting fermions, and beyond. Phys Scr 2016(T168):014001. http://arxiv.org/abs/1512.08882

    Article  ADS  Google Scholar 

  5. Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M (1982) Quantized hall conductance in a two-dimensional periodic potential. Phys Rev Lett 49:405–408

    Article  ADS  Google Scholar 

  6. Domany E, Alexander S, Bensimon D, Kadanoff LP (1983) Solutions to the Schrödinger equation on some fractal lattices. Phys Rev B 28:3110–3123

    Article  MathSciNet  ADS  Google Scholar 

  7. Mandelbrot BB, Pignoni R (1983) The fractal geometry of nature. WH Freeman, New York

    Google Scholar 

  8. Gefen Y, Mandelbrot BB, Aharony A (1980) Critical phenomena on fractal lattices. Phys Rev Lett 45:855–858

    Article  MathSciNet  ADS  Google Scholar 

  9. Gefen Y, Aharony A, Mandelbrot BB, Kirkpatrick S (1981) Solvable fractal family, and its possible relation to the backbone at percolation. Phys Rev Lett 47:1771–1774

    Article  MathSciNet  ADS  Google Scholar 

  10. Rammal R, Toulouse G (1982) Spectrum of the Schrödinger equation on a self-similar structure. Phys Rev Lett 49:1194–1197

    Article  MathSciNet  ADS  Google Scholar 

  11. Alexander S, Orbach R (1982) Density of states on fractals:fractons. Journal de Physique Lettres 43(17):625–631

    Article  Google Scholar 

  12. van Veen E, Yuan S, Katsnelson MI, Polini M, Tomadin A (2016) Quantum transport in Sierpinski carpets. Phys Rev B 93:115428

    Article  ADS  Google Scholar 

  13. Alexander S (1984) Some properties of the spectrum of the Sierpinski gasket in a magnetic field. Phys Rev B 29:5504–5508

    Article  MathSciNet  ADS  Google Scholar 

  14. Fukushima M, Shima T (1992) On a spectral analysis for the Sierpinski gasket. Potential Anal 1(1):1–35

    Article  MathSciNet  Google Scholar 

  15. Wang XR (1995) Localization in fractal spaces: exact results on the Sierpinski gasket. Phys Rev B 51:9310–9313

    Article  ADS  Google Scholar 

  16. Chakrabarti A (1996) Exact results for infinite and finite Sierpinski gasket fractals: extended electron states and transmission properties. J Phys Condens Matter 8(50):10951

    Article  ADS  Google Scholar 

  17. Pal B, Chakrabarti A (2012) Staggered and extreme localization of electron states in fractal space. Phys Rev B 85:214203

    Article  ADS  Google Scholar 

  18. Gordon JM, Goldman AM, Maps J, Costello D, Tiberio R, Whitehead B (1986) Superconducting-normal phase boundary of a fractal network in a magnetic field. Phys Rev Lett 56:2280–2283

    Article  ADS  Google Scholar 

  19. Shang J, Wang Y, Chen M, Dai J, Zhou X, Kuttner J, Hilt G, Shao X, Gottfried JM, Wu K (2015) Assembling molecular Sierpiński triangle fractals. Nat Chem 7(5):389–393

    Article  ADS  Google Scholar 

  20. Song ZG, Zhang YY, Li SS (2014) The topological insulator in a fractal space. Appl Phys Lett 104(23):1–5

    Article  ADS  Google Scholar 

  21. Bernevig BA, Hughes TL (2013) Topological insulators and topological superconductors. Princeton University Press, Princeton

    Google Scholar 

  22. Loring TA, Hastings MB (2010) Disordered topological insulators via C*-algebras. Eur Phys Lett 92(6):67004

    Article  ADS  Google Scholar 

  23. Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  24. Fradkin E (2013) Field theories of condensed matter physics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adhip Agarwala .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwala, A. (2019). Seeking Topological Phases in Fractals. In: Excursions in Ill-Condensed Quantum Matter. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-21511-8_4

Download citation

Publish with us

Policies and ethics