Skip to main content

Topological Insulators in Amorphous Systems

  • Chapter
  • First Online:
Excursions in Ill-Condensed Quantum Matter

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we will theoretically establish that amorphous systems can host topologically insulating phases. We will provide a demonstration of this by constructing models (using familiar ingredients) on random lattices where fermions hop between sites within a finite range. By tuning parameters (such as the density of sites), we show that the system undergoes a quantum phase transition from a trivial to a topological phase. We characterize the topological nature by obtaining the topological invariant and associated quantized transport signatures. We also address interesting features of such quantum phase transitions. This is achieved through a detailed study of all nontrivial symmetry classes (A, AII, D, DIII and C) in two dimensions. We will also provide a demonstration of a topological insulator in three dimensions. This work opens a new direction in the experimental search for topological quantum matter, by demonstrating their possibility in, as yet unexplored, amorphous systems. We discuss several examples including glassy systems and other engineered random systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klitzing KV, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett 45:494–497

    Article  ADS  Google Scholar 

  2. Laughlin RB (1981) Quantized hall conductivity in two dimensions. Phys Rev B 23:5632–5633

    Article  ADS  Google Scholar 

  3. Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M (1982) Quantized hall conductance in a two-dimensional periodic potential. Phys Rev Lett 49:405–408

    Article  ADS  Google Scholar 

  4. Haldane FDM (1988) Model for a quantum hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys Rev Lett 61:2015–2018

    Article  MathSciNet  ADS  Google Scholar 

  5. Murakami S, Nagaosa N, Zhang S-C (2004) Spin-hall insulator. Phys Rev Lett 93:156804

    Article  ADS  Google Scholar 

  6. Kane CL, Mele EJ (2005) \(Z_2\) topological order and the quantum spin hall effect. Phys Rev Lett 95:146802

    Article  Google Scholar 

  7. Kane CL, Mele EJ (2005) Quantum spin hall effect in graphene. Phys Rev Lett 95:226801

    Article  ADS  Google Scholar 

  8. Bernevig BA, Zhang S-C (2006) Quantum spin hall effect. Phys Rev Lett 96:106802

    Article  ADS  Google Scholar 

  9. Bernevig BA, Hughes TL, Zhang S-C (2006) Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314(5806):1757–1761

    Article  ADS  Google Scholar 

  10. König M, Wiedmann S, Brne C, Roth A, Buhmann H, Molenkamp LW, Qi X-L, Zhang S-C (2007) Quantum spin hall insulator state in HgTe quantum wells. Science 318(5851):766–770

    Article  ADS  Google Scholar 

  11. Fu L, Kane CL, Mele EJ (2007) Topological insulators in three dimensions. Phys Rev Lett 98:106803

    Article  ADS  Google Scholar 

  12. Moore JE, Balents L (2007) Topological invariants of time-reversal-invariant band structures. Phys Rev B 75:121306

    Article  ADS  Google Scholar 

  13. Roy R (2009) Topological phases and the quantum spin hall effect in three dimensions. Phys Rev B 79:195322

    Article  ADS  Google Scholar 

  14. Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava RJ, Hasan MZ (2008) A topological dirac insulator in a quantum spin hall phase. Nature 452:970–974

    Article  ADS  Google Scholar 

  15. Hasan MZ, Kane CL (2010) Colloquium: topological insulators. Rev Mod Phys 82:3045–3067

    Article  ADS  Google Scholar 

  16. Qi X-L, Zhang S-C (2011) Topological insulators and superconductors. Rev Mod Phys 83(4):1057

    Article  ADS  Google Scholar 

  17. Ando Y (2013) Topological insulator materials. J Phys Soc Jpn 82(10):102001

    Article  ADS  Google Scholar 

  18. Qi X-L, Hughes TL, Zhang S-C (2008) Topological field theory of time-reversal invariant insulators. Phys Rev B 78:195424

    Article  ADS  Google Scholar 

  19. Schnyder AP, Ryu S, Furusaki A, Ludwig AWW (2008) Classification of topological insulators and superconductors in three spatial dimensions. Phys Rev B 78:195125

    Article  ADS  Google Scholar 

  20. Ryu S, Schnyder AP, Furusaki A, Ludwig AWW (2010) Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J Phys 12(6):065010

    Article  Google Scholar 

  21. Kitaev A (2009) Periodic table for topological insulators and superconductors. AIP Conf Proc 1134(1):22–30. http://aip.scitation.org/doi/pdf/10.1063/1.3149495

  22. Altland A, Zirnbauer MR (1997) Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys Rev B 55:1142–1161

    Article  ADS  Google Scholar 

  23. Kitaev AY (2001) Unpaired majorana fermions in quantum wires. Phys Uspekhi 44(10S):131

    Article  ADS  Google Scholar 

  24. Chadov S, Qi X, Kübler J, Fecher GH, Felser C, Zhang SC (2010) Tunable multi-functional topological insulators in ternary heusler compounds. Nat Mater 9(7):541–545

    Article  ADS  Google Scholar 

  25. Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H (2012) Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of majorana fermions. Nat Phys 8(12):887–895

    Article  Google Scholar 

  26. Chang C-Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L-L et al (2013) Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340(6129):167–170

    Article  ADS  Google Scholar 

  27. Nadj-Perge S, Drozdov IK, Li J, Chen H, Jeon S, Seo J, MacDonald AH, Bernevig BA, Yazdani A (2014) Observation of majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346(6209):602–607

    Article  ADS  Google Scholar 

  28. Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T (2014) Experimental realization of the topological haldane model with ultracold fermions. Nature 515(7526):237–240

    Article  ADS  Google Scholar 

  29. Kobayashi K, Ohtsuki T, Imura K-I (2013) Disordered weak and strong topological insulators. Phys Rev Lett 110:236803

    Article  ADS  Google Scholar 

  30. Diez M, Fulga IC, Pikulin DI, TworzydÅo J, Beenakker CWJ (2014) Bimodal conductance distribution of Kitaev edge modes in topological superconductors. New J Phys 16(6):063049

    Article  Google Scholar 

  31. Li J, Chu R-L, Jain JK, Shen S-Q (2009) Topological Anderson insulator. Phys Rev Lett 102:136806

    Article  ADS  Google Scholar 

  32. Fulga IC, van Heck B, Edge JM, Akhmerov AR (2014) Statistical topological insulators. Phys Rev B 89:155424

    Article  ADS  Google Scholar 

  33. Ringel Z, Kraus YE, Stern A (2012) Strong side of weak topological insulators. Phys Rev B 86:045102

    Article  ADS  Google Scholar 

  34. Kraus YE, Lahini Y, Ringel Z, Verbin M, Zilberberg O (2012) Topological states and adiabatic pumping in quasicrystals. Phys Rev Lett 109:106402

    Article  ADS  Google Scholar 

  35. Fulga IC, Pikulin DI, Loring TA (2016) Aperiodic weak topological superconductors. Phys Rev Lett 116:257002

    Article  ADS  Google Scholar 

  36. Bandres MA, Rechtsman MC, Segev M (2016) Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys Rev X 6:011016

    Google Scholar 

  37. Christ N, Friedberg R, Lee T (1982) Random lattice field theory: general formulation. Nucl Phys B 202(1):89–125

    Article  MathSciNet  ADS  Google Scholar 

  38. Loring TA, Hastings MB (2010) Disordered topological insulators via C*-algebras. Eur Phys Lett 92(6):67004

    Article  ADS  Google Scholar 

  39. Bernevig BA, Hughes TL (2013) Topological insulators and topological superconductors. Princeton University Press, Princeton

    Book  Google Scholar 

  40. Roy R (2006) Topological invariants of time reversal invariant superconductors. arXiv:cond-mat/0608064

  41. Qi X-L, Hughes TL, Raghu S, Zhang S-C (2009) Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. Phys Rev Lett 102:187001

    Article  ADS  Google Scholar 

  42. Senthil T, Marston JB, Fisher MPA (1999) Spin quantum hall effect in unconventional superconductors. Phys Rev B 60:4245–4254

    Article  ADS  Google Scholar 

  43. Chern T (2016) \(d + id\) and \(d\) wave topological superconductors and new mechanisms for bulk boundary correspondence. AIP Advances 6(8)

    Article  MathSciNet  ADS  Google Scholar 

  44. Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  45. Medhi A, Shenoy VB (2012) Continuum theory of edge states of topological insulators: variational principle and boundary conditions. J Phys Condens Matter 24(35):355001

    Article  Google Scholar 

  46. Fradkin E (2013) Field theories of condensed matter physics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  47. Scappucci G, Capellini G, Lee WCT, Simmons MY (2009) Ultradense phosphorus in germanium delta-doped layers. Appl Phys Lett 94(16):162106

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adhip Agarwala .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwala, A. (2019). Topological Insulators in Amorphous Systems. In: Excursions in Ill-Condensed Quantum Matter. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-21511-8_3

Download citation

Publish with us

Policies and ethics