Skip to main content

An Adaptative Meshless Method Based on Prandtl’s Equation

  • Conference paper
  • First Online:
Applied Physics, System Science and Computers III (APSAC 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 574 ))

  • 433 Accesses

Abstract

This article presents a new method based on meshelss methods in the case of boundary layer. A traditional Finite Elements Method (MEF) is always engaged to calculate many parameters as well as nodes, and elements. This fact, can negatively affect the computational cost. In order to avoid this problem, we propose a new Mesh-Free using only one parameter. The single use of Prandtl equations on “nodes” in Mesh processing can provide a low cost and precision. In addition, the extracted nodes will be modeled using “Radial Basis Function in Finite Differences” (RBF-FD). Simulation of this algorithm is made on Matlab. Numerical results (of dynamic boundary) outperform conventional Mesh-Free methods as well as “Finite Elements Method”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tolstykh, A.I., Shirobokov, D.A.: On using radial basis functions in a finite difference mode with applications to elasticity problems. J. Comput. Mech. 33, 68–79 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. Javed, A., Djidjeli, K., Xing, J.T.: Adaptive shape parameter (ASP) technique for local radial basis functions (RBFs) and their application for solution of Navier-Strokes equations. Int. J. Mech. Aerosp. Inds. Mech. Eng. 7, 771–780 (2013)

    Google Scholar 

  3. Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212, 99–123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Shu, C., Ding, H., Yeo, K.S.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier-Stokes equations. J. Comput. Methods Appl. Mech. Eng. 192, 941–954 (2003)

    Article  ADS  Google Scholar 

  5. Kansa, E.J.: Multiquadrics a scattered data approximation scheme with applications to computational fluid-dynamics II. Solutions to parabolic, hyperbolic and elliptic partial-differential equations. J. Comput. Math. Appl. 19, 147–161 (1990)

    Article  MathSciNet  Google Scholar 

  6. Chinchapatnam, P.P., Djidjeli, K., Nair, P.B., Tan, M.: A compact RBF-FD based meshless method for the incompressible Navier-Stokes equations. Proc. Inst. Mech. Eng. Part M: J. Eng. Mar. Environ. 223, 275–290 (2009)

    Article  Google Scholar 

  7. Chandhini, G., Sanyasiraju, Y.V.S.S.: Local RBF-FD solutions for steady convection-diffusion problems. Int. J. Numer. Methods Eng. 72, 352–378 (2007)

    Article  MathSciNet  Google Scholar 

  8. Stevens, D., Power, H., Lees, M., Morvan, H.: The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems. J. Comput. Phys. 228, 4606–4624 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cecil, T., Qian, J., Osher, S.: Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions. J. Comput. Phys. 196, 327–347 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bollig, E.F., Flyer, N., Erlebacher, G.: Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs. J. Comput. Phys. 231, 7133–7151 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chinchapatam, P.P.: Radial basis function based meshless methods for fluid flow problems. Thesis, University of Southampton (2006)

    Google Scholar 

  12. Alhuri, Y.: Mesh-free radial basis functions for solving PDES some selected applications to water and coastal systems. Thesis, University of Mohammedia (2011)

    Google Scholar 

  13. Tampango, Y.: Developpement d’une methode sans maillage utilisant les approximations de Taylor. Thesis, University of Lorraine (2012)

    Google Scholar 

  14. Lehto, E.: High order local radial basis function methods for athmospheric flow simulations. Thesis, University of Upsala (2012)

    Google Scholar 

  15. Prandtl, L.: Über Flüssigkeitsbewegungen bei sehr kleiner Reibung. In: 3ème Congrés International dse Mathematiciens. Heiddelberg, pp. 484–491. Teubner, Leipzig (1904)

    Google Scholar 

  16. Ansys: Mohammadia School of Engineers. http://www.emi.ac.ma

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmae Mnebhi-Loudyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mnebhi-Loudyi, A., Boudi, E.M., Ouazar, D. (2019). An Adaptative Meshless Method Based on Prandtl’s Equation. In: Ntalianis, K., Vachtsevanos, G., Borne, P., Croitoru, A. (eds) Applied Physics, System Science and Computers III. APSAC 2018. Lecture Notes in Electrical Engineering, vol 574 . Springer, Cham. https://doi.org/10.1007/978-3-030-21507-1_46

Download citation

Publish with us

Policies and ethics