Skip to main content

Evaluating ESOP Optimization Methods in Quantum Compilation Flows

  • Conference paper
  • First Online:
Reversible Computation (RC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11497))

Included in the following conference series:

Abstract

Exclusive-or sum-of-products (ESOP) expressions are used as intermediate representations in quantum circuit synthesis flows, and their complexity impacts the number of gates of the resulting circuits. Many state-of-the-art techniques focus on minimizing the number of product terms in a ESOP expression, either exactly or in a heuristic fashion.

In this paper, we investigate into ESOP optimization considering two recent quantum compilation flows with opposite requirements. The first flow generates Boolean functions with a small number of Boolean variables, which enables the usage of methods from exact synthesis; the second flow generates Boolean functions with many Boolean variables, such that heuristics are more effective. We focus on the reduction of the number of T gates, which are expensive in fault-tolerant quantum computing and integrate ESOP optimization methods into both flows. We show an average reductions of 36.32% in T-count for the first flow, while in the second flow an average reduction of 28.23% is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://webhome.cs.uvic.ca/~dmaslov.

  2. 2.

    https://github.com/lsils/benchmarks.

  3. 3.

    https://github.com/hriener/easy.

  4. 4.

    https://github.com/gmeuli/caterpillar.

  5. 5.

    https://github.com/boschmitt/tweedledum.

References

  1. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 32(6), 818–830 (2013)

    Article  Google Scholar 

  2. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_5

    Chapter  Google Scholar 

  3. De Vos, A., Van Rentergem, Y.: Young subgroups for reversible computers. Adv. Math. Commun. 2(2), 183–200 (2008)

    Article  MathSciNet  Google Scholar 

  4. Drechsler, R.: Pseudo-kronecker expressions for symmetric functions. IEEE Trans. Comput. 48(9), 987–990 (1999)

    Article  MathSciNet  Google Scholar 

  5. Drechsler, R., Finder, A., Wille, R.: Improving ESOP-based synthesis of reversible logic using evolutionary algorithms. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 151–161. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0_16

    Chapter  Google Scholar 

  6. Fazel, K., Thornton, M., Rice, J.E.: ESOP-based Toffoli gate cascade generation. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 206–209 (2007)

    Google Scholar 

  7. Haener, T., Soeken, M., Roetteler, M., Svore, K.M.: Quantum circuits for floating-point arithmetic. In: Kari, J., Ulidowski, I. (eds.) RC 2018. LNCS, vol. 11106, pp. 162–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99498-7_11

    Chapter  Google Scholar 

  8. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a Python toolkit for prototyping with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 428–437. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_26

    Chapter  MATH  Google Scholar 

  9. JavadiAbhari, A., et al.: ScaffCC: a framework for compilation and analysis of quantum computing programs. In: Proceedings of the 11th ACM Conference on Computing Frontiers, p. 1. ACM (2014)

    Google Scholar 

  10. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability, pp. 613–631 (2009)

    Google Scholar 

  11. Maslov, D.: Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli optimization. Phys. Rev. A 93(2), 022311 (2016)

    Article  Google Scholar 

  12. Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by adding lines. In: 2010 40th IEEE International Symposium on Multiple-Valued Logic, pp. 217–222. IEEE (2010)

    Google Scholar 

  13. Mishchenko, A., Chatterjee, S., Brayton, R.K.: Improvements to technology mapping for LUT-based FPGAs. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 26(2), 240–253 (2007)

    Article  Google Scholar 

  14. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive-sums-of-products. In: Proceedings of International Workshop on Applications of the Reed-Muller Expansion in Circuit Design, pp. 242–250 (2001)

    Google Scholar 

  15. Mizuki, T., Otagiri, T., Sone, H.: An application of ESOP expressions to secure computations. J. Circ. Syst. Comput. 16(02), 191–198 (2007)

    Article  Google Scholar 

  16. Papakonstantinou, K., Papakonstantinou, G.: A nonlinear integer programming approach for the minimization of boolean expressions. J. Circ. Syst. Comput. 27(10), 1850163 (2018)

    Article  Google Scholar 

  17. Perkowski, M., Chrzanowska-Jeske, M.: An exact algorithm to minimize mixed-radix exclusive sums of products for incompletely specified Boolean functions. In: ISCAS, pp. 1652–1655 (1990)

    Google Scholar 

  18. Rawski, M.: Application of functional decomposition in synthesis of reversible circuits. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 285–290. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20860-2_20

    Chapter  MATH  Google Scholar 

  19. Riener, H., Ehlers, R., Schmitt, B., De Micheli, G.: Exact synthesis of ESOP forms. CoRR abs/1807.11103 (2018). http://arxiv.org/abs/1807.11103

  20. Sasao, T.: EXMIN2: a simplification algorithm for exclusive-or-sum-of-products expressions for multiple-valued-input two-valued-output functions. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 12(5), 621–632 (1993)

    Article  Google Scholar 

  21. Sasao, T.: Representations of logic functions using EXOR operators. In: Sasao, T., Fujita, M. (eds.) Representations of Discrete Functions, pp. 29–54. Springer, Boston (1996). https://doi.org/10.1007/978-1-4613-1385-4_2

    Chapter  MATH  Google Scholar 

  22. Soeken, M., Haener, T., Roetteler, M.: Programming quantum computers using design automation. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 137–146. IEEE (2018)

    Google Scholar 

  23. Soeken, M., Mozafari, F., Schmitt, B., De Micheli, G.: Compiling permutations for superconducting QPUs. In: DATE (2019, to appear)

    Google Scholar 

  24. Soeken, M., Riener, H., Haaswijk, W., Micheli, G.D.: The EPFL logic synthesis libraries. CoRR abs/1805.05121 (2018). http://arxiv.org/abs/1805.05121

  25. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Logic synthesis for quantum computing. CoRR abs/1706.02721 (2017). http://arxiv.org/abs/1706.02721

  26. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: LUT-based hierarchical reversible logic synthesis. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. (2018)

    Google Scholar 

  27. Stergiou, S., Daskalakis, K., Papakonstantinou, G.: A fast and efficient heuristic ESOP minimization algorithm. In: Proceedings of the 14th ACM Great Lakes symposium on VLSI, pp. 78–81. ACM (2004)

    Google Scholar 

  28. Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 145–150. IEEE (2013)

    Google Scholar 

  29. Zhegalkin, I.: The technique of calculation of statementsin symbolic logic. Mathe. Sbornik. 34, 9–28 (1927). (in Russian)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the European COST Action IC 1405 ‘Reversible Computation’, by the EPFL Open Science Fund and the Institutional Strategy of the University of Bremen, funded by the German Excellence Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Meuli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meuli, G., Schmitt, B., Ehlers, R., Riener, H., De Micheli, G. (2019). Evaluating ESOP Optimization Methods in Quantum Compilation Flows. In: Thomsen, M., Soeken, M. (eds) Reversible Computation. RC 2019. Lecture Notes in Computer Science(), vol 11497. Springer, Cham. https://doi.org/10.1007/978-3-030-21500-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21500-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21499-9

  • Online ISBN: 978-3-030-21500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics