Skip to main content

Numerical Case Studies: Inverse Problems

  • Chapter
  • First Online:
MEMS: Field Models and Optimal Design

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 573 ))

  • 840 Accesses

Abstract

Optimization plays a key role in the design of any device or system, and this is especially true for MEMSs. The issue is to find a design space for a device which will satisfy the performance specifications. Often, they include several design criteria which cannot all be met at the same time. This leads to the concept of multi-objective optimization, i.e., a search which attempts to satisfy several goals simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chereches R, Di Barba P, Topa V, Purcar M, Wiak S (2013) Optimal shape design of electrostatic microactuators: a multiobjective formulation. Int J Appl Electromagnetics Mech IJAEM 43(1–2):65–76

    Article  Google Scholar 

  2. Chereches RL, Di Barba P, Wiak S (2015) Non-linear inverse problems and optimal design of MEMS. COMPEL—Int J Comput Math Electr Electr Eng 34(3):608–623

    Article  Google Scholar 

  3. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  4. Di Barba P (2010) Multiobjective shape design in electricity and magnetism. Springer

    Google Scholar 

  5. Di Barba P, Liu B, Mognaschi ME, Venini P, Wiak S (2017) Multiphysics field analysis and evolutionary optimization: design of an electro-thermoelastic microactuator. Int J Appl Electromagnet Mech 54(3):433–448

    Article  Google Scholar 

  6. Di Barba P, Mognaschi ME (2009) Industrial design with multiple criteria: shape optimization of a permanent-magnet generator. IEEE Trans Magnetics 45(3):1482–1485

    Article  Google Scholar 

  7. Di Barba P, Gotszalk T, Majstrzyk W, Mognaschi ME, Orłowska K, Wiak S, Sierakowski A (2018) Optimal design of electromagnetically actuated MEMS cantilevers. Sensors 18(8):2523

    Article  Google Scholar 

  8. Di Barba P, Mognaschi ME, Lowther DA, Sykulski JK (2018) A benchmark TEAM problem for multi-objective pareto optimization of electromagnetic devices. IEEE Trans Magnetics 54(3):1

    Article  Google Scholar 

  9. Di Barba P, Dughiero F, Mognaschi ME, Savini A, Wiak S (2016) Biogeography-inspired multiobjective optimization and MEMS design. IEEE Trans Magnetics 52(3):1

    Google Scholar 

  10. Di Barba P, Mognaschi ME, Rezaei N, Lowther DA, Rahman T (2019) Many-objective shape optimisation of IPM motors for electric vehicle traction. Int J Appl Electromagnetics Mech IJAEM

    Google Scholar 

  11. Di Barba P, Mognaschi ME, Savini A, Wiak S (2016) Island biogeography as a paradigm for MEMS optimal design. Int J Appl Electr Mech IJAEM 51(s1):97–105

    Google Scholar 

  12. Di Barba P, Mognaschi ME, Venini P, Wiak S (2017) Biogeography-inspired multiobjective optimization for helping MEMS synthesis. Arch Electr Eng 66(3):607–623

    Article  Google Scholar 

  13. Di Barba P, Savini A, Wiak S (2008) Field models in electricity and magnetism. Springer, Berlin, Germany

    Book  Google Scholar 

  14. Di Barba P, Savini A, Wiak S (2017) Higher-order multiobjective design of MEMS. Int J Appl Electromagnet Mech 53(S2):S239–S247

    Article  Google Scholar 

  15. Di Barba P, Wiak S (2015) Evolutionary computing and optimal design of MEMS. IEEE/ASME Trans Mech 20(4):1660–1667

    Article  Google Scholar 

  16. Legtenberg R, Groeneveld AW, Elwenspoek M (1999) Comb-drive actuators for large displacements. J Micromech Microeng 6:320–329

    Article  Google Scholar 

  17. Majstrzyk W, Mognaschi ME, Orłowska K, Di Barba P, Sierakowski A, Dobrowolski R, Grabiec P, Gotszalk T (2018) Electromagnetic cantilever reference for the calibration of optical nanodisplacement systems. Sens Actuators, A 282:149–156

    Article  Google Scholar 

  18. Mathworks (2019) MatLab documentation [Online]. Available at https://it.mathworks.com/help/matlab/. Accessed on 6 March 2019

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mognaschi, M.E. (2020). Numerical Case Studies: Inverse Problems. In: MEMS: Field Models and Optimal Design. Lecture Notes in Electrical Engineering, vol 573 . Springer, Cham. https://doi.org/10.1007/978-3-030-21496-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21496-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21495-1

  • Online ISBN: 978-3-030-21496-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics