Skip to main content

Numerical Case Studies: Forward Problems

  • Chapter
  • First Online:
Book cover MEMS: Field Models and Optimal Design

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 573 ))

  • 853 Accesses

Abstract

Electrostatic micromotors were the first MEMS which had been designed and prototyped exploiting Silicon integrated technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bart SF, Mehregany M, Tavrow LS, Lang JH, Senturia SD (1992) Electric micromotor dynamics. IEEE Trans Electron Devices 39(3)

    Article  Google Scholar 

  2. Chereches R, Di Barba P, Topa V, Purcar M, Wiak S (2013) Optimal shape design of electrostatic microactuators: a multiobjective formulation. Int J Appl Electromagn Mech IJAEM 43(1–2):65–76

    Article  Google Scholar 

  3. Chereches RL, Di Barba P, Wiak S (2015) Non-linear inverse problems and optimal design of MEMS. COMPEL—Int J Comput Math Electr Electron Eng 34(3):608–623

    Article  Google Scholar 

  4. Delinchant B, Rakotoarison HL, Ardon V, Chabedec O, Cugat O (2009) Gradient based optimization of semi-numerical models with symbolic sensitivity: application to simple ferromagnetic MEMS switch device. Int J Appl Electromagn Mech IJAEM 30:189–200

    Article  Google Scholar 

  5. Di Barba P, Liu B, Mognaschi ME, Venini P, Wiak S (2017) Multiphysics field analysis and evolutionary optimization: design of an electro-thermoelastic microactuator. Int J Appl Electromagn Mech 54(3):433–448

    Article  Google Scholar 

  6. Di Barba P, Dughiero F, Mognaschi ME, Savini A, Wiak S (2016) Biogeography-inspired multiobjective optimization and MEMS design. IEEE Trans Magn 52(3)

    Google Scholar 

  7. Di Barba P, Gotszalk T, Majstrzyk W, Mognaschi ME, Orłowska K, Wiak S, Sierakowski A (2018) Optimal design of electromagnetically actuated MEMS cantilevers. Sensors (Switzerland) 18(8)

    Google Scholar 

  8. Di Barba P, Mognaschi ME, Savini A, Wiak S (2016) Island biogeography as a paradigm for MEMS optimal design. Int J Appl Electromagn Mech IJAEM 51(s1):97–105

    Article  Google Scholar 

  9. Di Barba P, Mognaschi ME, Venini P, Wiak S (2017) Biogeography-inspired multiobjective optimization for helping MEMS synthesis. Arch Electr Eng 66(3):607–623

    Article  Google Scholar 

  10. Di Barba P, Savini A, Wiak S (1994) 2-D numerical simulation of electrostatic micromotor torque. In: Proceedings of the second international conference on computation in electromagnetics, Nottingham, pp 227–230

    Google Scholar 

  11. Di Barba P, Savini A, Wiak S (2008) Field models in electricity and magnetism. Springer, Berlin

    Book  Google Scholar 

  12. Di Barba P, Savini A, Wiak S (2017) Higher-order multiobjective design of MEMS. Int J Appl Electromagn Mech 53(S2):S239–S247

    Article  Google Scholar 

  13. Di Barba P, Wiak S (2015) Evolutionary computing and optimal design of MEMS. IEEE/ASME Trans Mechatron 20(4):1660–1667

    Article  Google Scholar 

  14. Fan LS, Tai YC, Muller R (1989) IC processed electrostatic microactuator’s. Sens Actuators 20:41–47

    Article  Google Scholar 

  15. Fan LS, Tai YC, Muller R (1989) IC processed electrostatic synchronous microactuators. Sens Actuators 20:49–55

    Article  Google Scholar 

  16. Guckel H (1998) Progress in magnetic microactuators. Microsyst Technol 5(2):59–61

    Article  Google Scholar 

  17. Guckel H, Earles T, Klein J, Zook JD, Ohnstein T (1996) Electromagnetic linear actuators with inductive position sensing. Sens Actuators A 53:386–391

    Article  Google Scholar 

  18. Huang QA, Lee NKS (1999) Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator. Microsyst Technol 5:133–137

    Article  Google Scholar 

  19. Hussein H, Tahhan A, Le Moal P, Bourbon, G, Haddab Y, Lutz P (2016) Dynamic electro-thermo-mechanical modelling of a U-shaped electro-thermal actuator. J Micromech Microeng 26(2)

    Article  Google Scholar 

  20. Kolesar ES, Allen PB, Howard JT, Wilken JM, Boydston N (1999) Thermally actuated cantilever beam for achieving large in-plane mechanical deflections. Thin Solid Films 355:295–302

    Article  Google Scholar 

  21. Legtenberg R, Groeneveld AW, Elwenspoek M (1996) Comb-drive actuators for large displacements. J Micromech Microeng 6:320–329

    Article  Google Scholar 

  22. Majstrzyk W, Mognaschi ME, Orłowska K, Di Barba P, Sierakowski A, Dobrowolski R, Grabiec P, Gotszalk T (2018) Electromagnetic cantilever reference for the calibration of optical nanodisplacement systems. Sens Actuators A 282:149–156

    Article  Google Scholar 

  23. Mehregany M, Senturia SD, Lang JH, Nagarkar P (1992) Micromotor fabrication. IEEE Trans Electron Devices 39:2060–2069

    Article  Google Scholar 

  24. Paratte L, Racine GA, De Rooij NF, Bornand E (1991) Design of an integrated electrostatic stepper motor with axial field. Sens Actuators A 25–27:597–603

    Article  Google Scholar 

  25. Senturia SD, Harris RM, Johnson BP, Nabors SK, Shulman MA, White JK (1992) A computer-aided design system for microelectromechanical systems (MEMCAD). J Microelectromech Syst 1:3–13

    Article  Google Scholar 

  26. Tang WC, Lim MG, Howe RT (1992) Electrostatic comb drive levitation and control method. J Microelectromech Syst 1:170–178

    Article  Google Scholar 

  27. Wiak S, Smołka K (2009) Numerical modelling of 3-D comb drive electrostatic accelerometers structure (method of levitation force reduction). COMPEL 28:593–602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Di Barba .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Barba, P., Mognaschi, M.E. (2020). Numerical Case Studies: Forward Problems. In: MEMS: Field Models and Optimal Design. Lecture Notes in Electrical Engineering, vol 573 . Springer, Cham. https://doi.org/10.1007/978-3-030-21496-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21496-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21495-1

  • Online ISBN: 978-3-030-21496-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics