Skip to main content

From MEMS to NEMS

  • Chapter
  • First Online:
MEMS: Field Models and Optimal Design

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 573 ))

Abstract

Nanotechnology, as the scientific and technological discipline dealing with the design, fabrication and application of systems whose dimensions or tolerances are in the domain of nanometers, is becoming increasingly important in many industrial and scientific areas. Nanotechnologies and nanoscience are triggered by diverse fields and applications but on the other hand, they trigger by themselves future industrial and practical solutions. One of the most important challenges observed nowadays in nanotechnology is driving the manufacturing processes to sub-nm accuracy level for critical features and positioning tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bannon F, Clark J, Nguyen C (2000) High-Q HF microelectromechanical filters. IEEE J Solid-State Circuits 35(4):512–526

    Article  Google Scholar 

  2. Barton RA, Ilic B, Van Der Zande AM, Whitney WS, McEuen PL, Parpia JM, Craighead HG (2011) High, size-dependent quality factor in an array of graphene mechanical resonators. Nano Lett 11(3):1232–1236

    Article  Google Scholar 

  3. Belic D, Shawrav M, Gavagnin M, Stöger-Pollach M, Wanzenboeck D, Bertagnolli E (2015) Direct-write deposition and focused-electron-beam-induced purification of gold nanostructures. ACS Appl Mater Interfaces 7(4):2467–2479

    Article  Google Scholar 

  4. Chen C, Hone J (2013) Graphene nanoelectromechanical systems. Proc IEEE 101(7):1766–1779

    Article  Google Scholar 

  5. Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Hone J (2009) Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotechnol 4(12):861–867

    Article  Google Scholar 

  6. Cleland A, Roukes M (1996) Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl Phys Lett 69:2653

    Article  Google Scholar 

  7. Cleland A, Roukes M (1999) External control of dissipation in a nanometer-scale radiofrequency mechanical resonator. Sens Actuators A 72(3):256–261

    Article  Google Scholar 

  8. Goniszewski S, Gallop J, Adabi M, Gajewski K, Shaforost O, Klein N, Hao L (2015) Self-supporting graphene films and their applications. IET Circuits Devices Syst Spec 9:420–427

    Article  Google Scholar 

  9. Gotszalk T, Grabiec P, Rangelow I (2003) Calibration and examination of piezoresistive Wheatstone bridge cantilevers for scanning probe microscopy. Ultramicroscopy 97(1–4):385–389

    Article  Google Scholar 

  10. Grabiec P, Gotszalk T, Radojewski J, Edinger K, Abedinov N, Rangelow IW (2002) SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis. Microelectron Eng 61–62:981–986

    Article  Google Scholar 

  11. Hoeflich K, Jurczyk J, Zhang Y, Puydinger M, Goetz M, Guerra-Nunez C, Best J, Kapusta Cz, Utke I (2017) Direct electron beam writing of silver-based nanostructures. ACS Appl Mater Interfaces 9:24071–24077

    Article  Google Scholar 

  12. Huang S, Stott A, Green R, Beck M (1988) Electronic transducer for measurement of low value capacitances. J Phys E: Sci Instrum 21:242

    Article  Google Scholar 

  13. Huang X, Zorman C, Mehregany M, Roukes M (2003) Nanoelectromechanical systems: nanodevice motion at microwave frequencies. Nature 421:6922

    Google Scholar 

  14. Huth M (2010) Granular metals: from electronic correlations to strain-sensing applications. J Appl Phys 107:113709

    Article  Google Scholar 

  15. Ko WH (2007) Trends and frontiers of MEMS. Sens Actuators A 136(1):62–67

    Article  Google Scholar 

  16. Koops H, Fukuda H (2016) Giant current density via indirect exciton orbit overlapping in polarized nano-granular materials. J Vac Sci Technol 33(2):02B108

    Article  Google Scholar 

  17. Lewis B, Mound B, Srijanto B, Fowlkes J, Pharr G, Rack P (2017) Growth and nanomechanical characterization of nanoscale 3D architectures grown via focused electron beam induced deposition. Nanoscale 9:16349–16356

    Article  Google Scholar 

  18. Li M, Tang HX, Roukes ML (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotechnol 2(2):114–120

    Article  Google Scholar 

  19. Llobet J, Gerboles M, Sansa M, Bausells J, Borrise X, Perez-Murano F (2015) Fabrication of functional electromechanical nanowire resonators by focused ion beam implantation. J Micro-Nanolithography MEMS and MOEMS 14(3)

    Article  Google Scholar 

  20. Llobet J, Sansa M, Gerbolés M, Mestres N, Arbiol J, Borrisé X, Pérez-Murano F (2014) Enabling electromechanical transduction in silicon nanowire mechanical resonators fabricated by focused ion beam implantation. Nanotechnology 25:135302

    Article  Google Scholar 

  21. López-Polín G, Gómez-Navarro C, Parente V, Katsnelson MI, Pérez-Murano F, Gómez-Herrero J (2015) Increasing the elastic modulus of graphene by controlled defect creation. Nat Phys 11:26

    Article  Google Scholar 

  22. Moczala M, Babij M, Kwoka K, Piasecki T, Sierakowski A, Gotszalk T (2019) Resolution improvement in electromagnetically actuated Wheatstone bridge configuration micromechanical resonators. Sens Actuators A 284:181–185

    Article  Google Scholar 

  23. Moczała M, Kopiec D, Sierakowski A, Dobrowolski R, Grabiec P, Gotszalk T (2014) Investigations of mechanical properties of microfabricated resonators using atomic force microscopy related techniques. Microelectron Eng 119:164–168

    Article  Google Scholar 

  24. Moczała M, Kwoka K, Piasecki T, Kunicki P, Sierakowski A, Gotszalk T (2017) Fabrication and characterization of micromechanical bridges with strain sensors deposited using focused electron beam induced technology. Microelectron Eng 176:111–115

    Article  Google Scholar 

  25. Moczała M, Sierakowski A, Dobrowolski R, Grabiec P, Gotszalk T (2013) Fabrication and measurement of micromechanical bridge structures for mass change detection. Proceedings SPIE, vol 8902, p 89021.s

    Google Scholar 

  26. Nieradka K, Kopiec D, Małozięć G, Kowalska Z, Grabiec P, Janus P, Gotszalk T (2012) Fabrication and characterization of electromagnetically actuated microcantilevers for biochemical sensing, parallel AFM and nanomanipulation. Microelectron Eng 98:676–679

    Article  Google Scholar 

  27. Orłowska K, Słupski P, Świątkowski M, Kunicki P, Sankowska A, Gotszalk T (2015) Light intensity fibre optic sensor for MEMS displacement and vibration metrology. Opt Laser Technol 65:159–163

    Article  Google Scholar 

  28. Orłowska K, Światkowski M, Kunicki P, Kopiec D, Gotszalk T (2016) High-resolution and wide-bandwidth light intensity fiber optic displacement sensor for MEMS metrology. Appl Opt 55(22):5960–5966

    Article  Google Scholar 

  29. Polski Komitet Normalizacyjny (2010) Międzynarodowy słownik metrologii. Pojęcia podstawowe i ogólne oraz terminy z nimi związane (VIM). PKN-ISO/IEC Guide 99

    Google Scholar 

  30. Puydinger M, Velo M, Domingos R, Zhang Y, Maeder X, Guerra-nun C, Be F (2016) Annealing-based electrical tuning of cobalt–carbon deposits grown by focused-electron-beam-induced deposition. ACS Appl Mater Interfaces 8:32496–32503

    Article  Google Scholar 

  31. Rangelow IW, Grabiec P, Gotszalk T, Edinger K (2002) Piezoresistive SXM sensors. Surf Interface Anal 33:59–64

    Article  Google Scholar 

  32. Schwalb Ch, Grimm Ch, Baranowski M, Sachser R, Porrati F, Reith H, Das P, Müller J, Völklein F, Kaya A, Huth M (2010) A tunable strain sensor using nanogranular metals. Sensors 10:9847–9856

    Article  Google Scholar 

  33. Sekaric L, Parpia JM, Craighead H, Feygelson T, Houston B, Butler J (2002) Nanomechanical resonant structures in nanocrystalline diamond. Appl Phys Lett 81:4455–4457

    Article  Google Scholar 

  34. Smith D, Pratt J, Howard L (2009) A fiber-optic sinterferometer with subpicometer resolution for dc and low-frequency displacement measurement. Rev Sci Instrum 80(3):035105

    Article  Google Scholar 

  35. Swiatkowski M, Wojtuś A, Wielgoszewski G, Rudek M, Piasecki T, Jozwiak G, Gotszalk T (2019) A low-noise measurement system for scanning thermal microscopy resistive nanoprobes based on a transformer ratio-arm bridge. Meas Sci Technol 29:045901

    Article  Google Scholar 

  36. Tamayo J (2005) Study of the noise of micromechanical oscillators under quality factor enhancement via driving force control. J Appl Phys 97(4):1–10

    Article  Google Scholar 

  37. Tortonese M, Barrett R, Quate C (1993) Atomic resolution with an atomic force microscope using piezoresistive detection. Appl Phys Lett 62(8):834–836

    Article  Google Scholar 

  38. Zaborowski M, Dumania P, Tomaszewski D, Czupryniak J, Ossowski T (2012) Development of Si nanowire chemical sensors. Proc Eng 47(1000):1053–1056. https://doi.org/10.1016/j.proeng.2012.09.331

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wrocław University of Science and Technology (WUST) statutory grant. The author would like to thank all the coworkers of the Nanometrology Division of the Faculty of Microsystems Electronics and Photonics at the WUST for their support and collaboration.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gotszalk, T. (2020). From MEMS to NEMS. In: MEMS: Field Models and Optimal Design. Lecture Notes in Electrical Engineering, vol 573 . Springer, Cham. https://doi.org/10.1007/978-3-030-21496-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21496-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21495-1

  • Online ISBN: 978-3-030-21496-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics