Skip to main content

Flexible Endoscopy: Multispectral Imaging

  • Chapter
  • First Online:
Novel Optical Endoscopes for Early Cancer Diagnosis and Therapy

Part of the book series: Springer Theses ((Springer Theses))

  • 341 Accesses

Abstract

Multispectral imaging (MSI) enables both spatial (x, y) and spectral (wavelength, λ) information to be recorded. This allows delineation of fluorophores applied during molecular endoscopy based on their spectral properties, rather than a single intensity reading, allowing multiplexed fluorescence imaging of multiple targeted fluorophores. MSI also has the potential to image endogenous contrast due to wavelength-dependent light-tissue interactions. To address the clinical challenge of Barrett’s surveillance, a multispectral endoscope capable of acquisition of 9-band multispectral images in vivo was developed. This Chapter describes the design and validation of two alternative optical configurations of the device. The first, designed for multispectral fluorescence imaging, was demonstrated to be capable of accurately detecting fluorescent contrast agents both in well plates and in a realistic clinical scenario simulated using a whole ex vivo porcine oesophagus. The second, designed for multispectral reflectance imaging of endogenous contrast, has been applied in a first-in-human clinical trial, where the measured spectra showed promising differences between Barrett’s oesophagus and cancer tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee JH, Wang TD (2016) Molecular endoscopy for targeted imaging in the digestive tract. Lancet Gastroenterol Hepatol 1:147–155

    Article  Google Scholar 

  2. Luthman AS, Dumitru S, Quiros-Gonzalez I, Joseph J, Bohndiek SE (2017) Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array. J Biophotonics 10:840–853

    Article  Google Scholar 

  3. Luthman S, Waterhouse D, Bollepalli L, Joseph J, Bohndiek S (2017) A multispectral endoscope based on spectrally resolved detector arrays, p 104110A

    Google Scholar 

  4. Joshi BP et al (2016) Multimodal endoscope can quantify wide-field fluorescence detection of Barrett’s neoplasia. Endoscopy 48

    Google Scholar 

  5. Joshi BP et al (2016) Multimodal video colonoscope for targeted wide-field detection of nonpolypoid colorectal neoplasia. Gastroenterology 150:1084–1086

    Article  Google Scholar 

  6. Yang C, Hou V, Nelson LY, Seibel EJ (2013) Color-matched and fluorescence-labeled esophagus phantom and its applications. J Biomed Optics 18:26020

    Article  Google Scholar 

  7. Georgakoudi I et al (2001) Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus. Gastroenterology 120:1620–1629

    Article  Google Scholar 

  8. Bays R, Wagnie G, Robert D, Braichotte D (1996) Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry, vol 35

    Article  ADS  Google Scholar 

  9. Bargo PR et al (2005) In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy. J Biomed Optics 10:1–15

    Article  Google Scholar 

  10. Holmer C et al (2007) Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction. J Biomed Optics 12:014025

    Article  ADS  Google Scholar 

  11. Thueler P et al (2003) In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties. J Biomed Optics 8:495–503

    Article  ADS  Google Scholar 

  12. Lu G, Fei B (2014) Medical hyperspectral imaging: a review. J Biomed Optics 19:10901

    Article  ADS  Google Scholar 

  13. Calin MA, Parasca SV, Savastru D, Manea D (2014) Hyperspectral imaging in the medical field: present and future. Appl Spectrosc Rev 49:435–447

    Article  ADS  Google Scholar 

  14. Krishnamoorthi R, Iyer PG (2015) Molecular biomarkers added to image-enhanced endoscopic imaging: will they further improve diagnostic accuracy? Best Pract Res Clin Gastroenterol 29:561–573

    Article  Google Scholar 

  15. Fawzy Y, Lam S, Zeng H (2015) Rapid multispectral endoscopic imaging system for near real-time mapping of the mucosa blood supply in the lung. Biomed Optics Express 6:2980–2990

    Article  Google Scholar 

  16. Kester RT, Bedard N, Gao L, Tkaczyk TS (2011) Real-time snapshot hyperspectral imaging endoscope. J Biomed Optics 16:056005

    Article  ADS  Google Scholar 

  17. Saito T, Yamaguchi H (2015) Optical imaging of hemoglobin oxygen saturation using a small number of spectral images for endoscopic application. J Biomed Optics 20:126011

    Article  ADS  Google Scholar 

  18. Johnson WR, Wilson DW, Fink W, Humayun M, Bearman G (2007) Snapshot hyperspectral imaging in ophthalmology. J Biomed Optics 12:014036

    Article  ADS  Google Scholar 

  19. Mori M et al (2014) Intraoperative visualization of cerebral oxygenation using hyperspectral image data: a two-dimensional mapping method. Int J Comput Assist Radiol Surg 9:1059–1072

    Article  Google Scholar 

  20. MacKenzie LE, Choudhary TR, McNaught AI, Harvey AR (2016) In vivo oximetry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging. Exp Eye Res 149:48–58

    Article  Google Scholar 

  21. Martinez-Herrera SE et al (2014) Multispectral endoscopy to identify precancerous lesions in Gastric Mucosa, vol 8509, pp 43–51

    Google Scholar 

  22. Leavesley SJ et al (2016) Hyperspectral imaging fluorescence excitation scanning for colon cancer detection. J Biomed Optics 21:104003

    Article  ADS  Google Scholar 

  23. Han Z et al (2016) In vivo use of hyperspectral imaging to develop a noncontact endoscopic diagnosis support system for malignant colorectal tumors. J Biomed Optics 21:016001

    Article  ADS  Google Scholar 

  24. Kumashiro R et al (2016) An integrated endoscopic system based on optical imaging and hyper spectral data analysis for colorectal cancer detection. Anticancer Res 3932:3925–3932

    Google Scholar 

  25. Panasyuk SV et al (2007) Medical hyperspectral imaging to facilitate residual tumor identification during surgery. Cancer Biol Ther 6:439–446

    Article  Google Scholar 

  26. Liu Z, Yan J, Zhang D, Li Q-L (2007) Automated tongue segmentation in hyperspectral images for medicine. Appl Opt 46:8328–8334

    Article  ADS  Google Scholar 

  27. Akbari H, Kosugi Y, Kojima K, Tanaka N (2008) Wavelet-based compression and segmentation of hyperspectral images in surgery. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 5128, pp 142–149

    Google Scholar 

  28. Hagen N, Kudenov MW (2013) Review of snapshot spectral imaging technologies. Opt Eng 52:090901

    Article  ADS  Google Scholar 

  29. Gu X et al (2016) Image enhancement based on in vivo hyperspectral gastroscopic images: a case study. J Biomed Optics 21:101412

    Article  ADS  Google Scholar 

  30. Leitner R et al (2013) Multi-spectral video endoscopy system for the detection of cancerous tissue. Pattern Recogn Lett 34:85–93

    Article  Google Scholar 

  31. Yang C et al (2014) Scanning fiber endoscope with multiple fluorescence-reflectance imaging channels for guiding biopsy 89360R

    Google Scholar 

  32. Lee CM, Engelbrecht CJ, Soper TD, Helmchen F, Seibel EJ (2010) Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. J Biophotonics 3:385–407

    Article  Google Scholar 

  33. Tate TH, Keenan M, Black J, Utzinger U, Barton JK (2017) Ultraminiature optical design for multispectral fluorescence imaging endoscopes. J Biomed Optics 22:036013

    Article  ADS  Google Scholar 

  34. Waterhouse DJ, Luthman AS, Bohndiek SE (2017) Spectral band optimization for multispectral fluorescence imaging, vol 10057, pp 1005709

    Google Scholar 

  35. ThermoFisher Fluorescence SpectraViewer

    Google Scholar 

  36. Kaye PV et al (2009) Barrett’s dysplasia and the Vienna classification: reproducibility, prediction of progression and impact of consensus reporting and p53 immunohistochemistry. Histopathology 54:699–712

    Article  Google Scholar 

  37. Bioucas-Dias JM et al (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Sel Top Appl Earth Obs Remote Sens 5:354–379

    Article  ADS  Google Scholar 

  38. Shim MG, Wilson BC (1996) The effects of ex vivo handling procedures on the near-infrared Raman spectra of normal mammalian tissues. Photochem Photobiol 63:662–671

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Jonathan Waterhouse .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waterhouse, D.J. (2019). Flexible Endoscopy: Multispectral Imaging. In: Novel Optical Endoscopes for Early Cancer Diagnosis and Therapy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-21481-4_5

Download citation

Publish with us

Policies and ethics