Skip to main content

Flexible Endoscopy: Early Detection of Dysplasia in Barrett’s Oesophagus

  • Chapter
  • First Online:
Novel Optical Endoscopes for Early Cancer Diagnosis and Therapy

Part of the book series: Springer Theses ((Springer Theses))

  • 365 Accesses

Abstract

Barrett’s oesophagus is an acquired condition in which columnar epithelium replaces the stratified squamous epithelium of the lining of the distal oesophagus, the pipe which connects the throat to the stomach. Crucially for early detection attempts, Barrett’s oesophagus predisposes patients to the development of oesophageal adenocarcinoma, prompting the use of surveillance regimes to detect early malignancy for endoscopic therapy with curative intent. The currently accepted surveillance regime uses white light endoscopy together with random biopsies, but has poor sensitivity and discards information from numerous light–tissue interactions that could be exploited to probe structural, functional, and molecular changes in the tissue. The potential to improve clinical outcomes by increasing contrast for dysplasia with advanced optical techniques has driven a great deal of research in this area. In light of the translational characteristics and translational barriers presented in Chap. 1, advanced optical techniques are reviewed here in the context of identifying the most promising techniques to take forward in our own work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CRUK. Resources|CRUK Cambridge Centre early detection programme. Available at: https://www.earlydetectioncambridge.org.uk/resources. Accessed 18 Jan 2018

  2. Gatenby P et al (2014) Lifetime risk of esophageal adenocarcinoma in patients with Barrett’s esophagus. World J Gastroenterol WJG 20:9611–9617

    Article  Google Scholar 

  3. Desai TK et al (2012) The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett’s oesophagus: a meta-analysis. Gut 61:970–976

    Article  Google Scholar 

  4. Bhat S et al (2011) Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J Natl Cancer Inst 103:1049–1057

    Article  Google Scholar 

  5. Hvid-Jensen F, Pedersen L, Drewes AM, Sørensen HT, Funch-Jensen P (2011) Incidence of adenocarcinoma among patients with Barrett’s esophagus. New Engl J Med 365:1375–1383

    Article  Google Scholar 

  6. Duits LC et al (2015) Barrett’s oesophagus patients with low-grade dysplasia can be accurately risk-stratified after histological review by an expert pathology panel. Gut 64:700–706

    Article  Google Scholar 

  7. Reid BJ, Levine DS, Longton G, Blount PL, Rabinovitch PS (2000) Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am J Gastroenterol 95:1669–1676

    Google Scholar 

  8. CRUK. Oesophageal cancer statistics. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/oesophageal-cancer

  9. Barbour AP et al (2010) Risk stratification for early esophageal adenocarcinoma: analysis of lymphatic spread and prognostic factors. Ann Surg Oncol 17:2494–2502

    Article  Google Scholar 

  10. Fitzgerald RC et al (2014) British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut 63:7–42

    Article  Google Scholar 

  11. Weusten BLAM et al (2017) Endoscopic management of Barrett’s esophagus: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 191–198 (2017)

    Article  Google Scholar 

  12. Shaheen NJ, Falk GW, Iyer PG, Gerson LB, American College of Gastroenterology (2016) ACG clinical guideline: diagnosis and management of Barrett’s esophagus. Am J Gastroenterol 111:30–50

    Google Scholar 

  13. Evans JA et al (2012) The role of endoscopy in Barrett’s esophagus and other premalignant conditions of the esophagus. Gastrointest Endosc 76:1087–1094

    Article  ADS  Google Scholar 

  14. Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ (2011) American Gastroenterological Association technical review on the management of Barrett’s esophagus. Gastroenterology 140:e18–e52

    Article  Google Scholar 

  15. Kastelein F et al (2015) Impact of surveillance for Barrett’s oesophagus on tumour stage and survival of patients with neoplastic progression. Gut 65:1–7

    Google Scholar 

  16. Verbeek RE et al (2014) Surveillance of Barrett’s esophagus and mortality from esophageal adenocarcinoma: a population-based cohort study. Am J Gastroenterol 109:1215–1222

    Article  Google Scholar 

  17. El-Serag HB et al (2016) Surveillance endoscopy is associated with improved outcomes of oesophageal adenocarcinoma detected in patients with Barrett’s oesophagus. Gut 65:1252–1260

    Article  Google Scholar 

  18. Corley DA et al (2013) Impact of endoscopic surveillance on mortality from Barrett’s esophagus-associated esophageal adenocarcinomas. Gastroenterology 145:312–319

    Article  Google Scholar 

  19. Levine DS, Blount PL, Rudolph RE, Reid BJ (2000) Safety of a systematic endoscopic biopsy protocol in patients with Barrett’s esophagus. Am J Gastroenterol 95:1152–1157

    Article  Google Scholar 

  20. Sturm MB, Wang TD (2015) Emerging optical methods for surveillance of Barrett’s oesophagus. Gut 64:1816–1823

    Article  Google Scholar 

  21. Brown H et al (2015) Scoping the future: an evaluation of endoscopy capacity across the NHS in England

    Google Scholar 

  22. Bergholt MS et al (2014) Fiberoptic confocal raman spectroscopy for real-time in vivo diagnosis of dysplasia in Barrett’s esophagus. Gastroenterology 146:27–32

    Article  Google Scholar 

  23. Chedgy FJQ, Subramaniam S, Kandiah K, Thayalasekaran S, Bhandari P (2016) Acetic acid chromoendoscopy: improving neoplasia detection in Barrett’s esophagus. World J Gastroenterol 22:5753–5760

    Article  Google Scholar 

  24. Thosani N et al (2016) ASGE Technology Committee systematic review and meta-analysis assessing the ASGE preservation and incorporation of valuable endoscopic innovations thresholds for adopting real-time imaging-assisted endoscopic targeted biopsy during endoscopic surveillance. Gastrointest Endosc 83:684–698

    Article  ADS  Google Scholar 

  25. Beg S, Wilson A, Ragunath K (2016) The use of optical imaging techniques in the gastrointestinal tract. Frontline Gastroenterol 7:207–215

    Article  Google Scholar 

  26. Swager A, Curvers WL, Bergman JJ (2015) Diagnosis by endoscopy and advanced imaging. Best Pract Res Clin Gastroenterol 29:97–111

    Article  Google Scholar 

  27. Olliver JR, Wild CP, Sahay P, Dexter S, Hardie LJ (2003) Chromoendoscopy with methylene blue and associated DNA damage in Barrett’s oesophagus. Lancet 362:373–374

    Article  Google Scholar 

  28. Coletta M et al (2016) Acetic acid chromoendoscopy for the diagnosis of early neoplasia and specialized intestinal metaplasia in Barrett’s esophagus: a meta-analysis. Gastrointest Endosc 83:57–67

    Article  ADS  Google Scholar 

  29. Sharma P et al (2013) Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial. Gut 62:15–21

    Article  Google Scholar 

  30. Sharma P et al (2016) Development and validation of a classification system to identify high-grade dysplasia and esophageal adenocarcinoma in Barrett’s esophagus using narrow band imaging. Gastroenterology 150:591–598

    Article  Google Scholar 

  31. Maes S, Sharma P, Bisschops R (2016) Review: surveillance of patients with Barrett oesophagus. Best Pract Res Clin Gastroenterol 30:901–912

    Article  Google Scholar 

  32. Pohl J et al (2007) Comparison of computed virtual chromoendoscopy and conventional chromoendoscopy with acetic acid for detection of neoplasia in Barrett’s esophagus. Endoscopy 39:594–598

    Article  Google Scholar 

  33. Boerwinkel DF et al (2014) Effects of autofluorescence imaging on detection and treatment of early neoplasia in patients with Barrett’s esophagus. Clin Gastroenterol Hepatol 12:774–781

    Article  Google Scholar 

  34. Giacchino M et al (2013) Clinical utility and interobserver agreement of autofluorescence imaging and magnification narrow-band imaging for the evaluation of Barrett’s esophagus: a prospective tandem study. Gastrointest Endosc 77:711–718

    Article  Google Scholar 

  35. Curvers WL et al (2010) Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett’s esophagus. Gastroenterology 139:1106–1114

    Article  Google Scholar 

  36. Curvers WL et al (2011) Endoscopic trimodal imaging versus standard video endoscopy for detection of early Barrett’s neoplasia: a multicenter, randomized, crossover study in general practice. Gastrointest Endosc 73:195–203

    Article  Google Scholar 

  37. Manfredi MA et al (2015) Electronic chromoendoscopy. Gastrointest Endosc 81:249–261

    Article  Google Scholar 

  38. Sharma P et al (2011) Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest Endosc 74:465–472

    Article  ADS  Google Scholar 

  39. Trovato C et al (2013) Confocal laser endomicroscopy for in vivo diagnosis of Barrett’s oesophagus and associated neoplasia: a pilot study conducted in a single Italian centre. Dig Liver Dis 45:396–402

    Article  Google Scholar 

  40. Longcroft-Wheaton G et al (2013) Duration of acetowhitening as a novel objective tool for diagnosing high risk neoplasia in Barrett’s esophagus: a prospective cohort trial. Endoscopy 45:426–432

    Article  Google Scholar 

  41. Ngamruengphong S, Sharma VK, Das A (2009) Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett’s esophagus: a meta-analysis. Gastrointest Endosc 69:1021–1028

    Article  Google Scholar 

  42. Kaneko K et al (2014) Effect of novel bright image enhanced endoscopy using blue laser imaging (BLI). Endosc Int Open 02:E212–E219

    Article  Google Scholar 

  43. Osawa H et al (2014) Blue laser imaging provides excellent endoscopic images of upper gastrointestinal lesions. Video J Encycl GI Endosc 1:607–610

    Article  Google Scholar 

  44. Miyake Y et al (2005) Development of new electronic endoscopes using the spectral images of an internal organ. In: Proceedings of the IS&T/SID’s thirteen color imaging conference, Society for Imaging Science and Technology, pp 261–269

    Google Scholar 

  45. Kodashima S, Fujishiro M (2010) Novel image-enhanced endoscopy with i-scan technology. World J Gastroenterol 16:1043–1049

    Article  Google Scholar 

  46. Rodriguez SA et al (2010) Ultrathin endoscopes. Gastrointest Endosc 71:893–898

    Article  ADS  Google Scholar 

  47. Imagawa H et al (2011) Improved visibility of lesions of the small intestine via capsule endoscopy with computed virtual chromoendoscopy. Gastrointest Endosc 73:299–306

    Article  Google Scholar 

  48. Dung LR, Wu YY (2010) A wireless narrowband imaging chip for capsule endoscope. IEEE Trans Biomed Circuits Syst 4:462–468

    Article  Google Scholar 

  49. von Holstein CS et al (1996) Detection of adenocarcinoma in Barrett’s oesophagus by means of laser induced fluorescence. Gut 39:711–716

    Article  Google Scholar 

  50. Kara MA et al (2005) Endoscopic video autofluorescence imaging may improve the detection of early neoplasia in patients with Barrett’s esophagus. Gastrointest Endosc 61:679–685

    Article  ADS  Google Scholar 

  51. Wallace M et al (2011) Miami classification for probe-based confocal laser endomicroscopy. Endoscopy 43:882–891

    Article  Google Scholar 

  52. Xiong YQ, Ma SJ, Zhou JH, Zhong XS, Chen Q (2016) A meta-analysis of confocal laser endomicroscopy for the detection of neoplasia in patients with Barrett’s esophagus. J Gastroenterol Hepatol (Australia) 31:1102–1110

    Article  Google Scholar 

  53. Kara MA, Ennahachi M, Fockens P, ten Kate FJW, Bergman JJGHM (2006) Detection and classification of the mucosal and vascular patterns (mucosal morphology) in Barrett’s esophagus by using narrow band imaging. Gastrointest Endosc 64:155–166

    Article  Google Scholar 

  54. Singh R et al (2008) Narrow-band imaging with magnification in Barrett’s esophagus: validation of a simplified grading system of mucosal morphology patterns against histology. Endoscopy 40:457–463

    Article  Google Scholar 

  55. Sharma P et al (2006) The utility of a novel narrow band imaging endoscopy system in patients with Barrett’s esophagus. Gastrointest Endosc 64:167–175

    Article  ADS  Google Scholar 

  56. Kandiah K et al (2016) OC-054 development and validation of a classification system to identify Barrett’s neoplasia using acetic acid chromoendoscopy: the predict classification: Abstract OC-054 Table 1. Gut 65:A31.1–A31 (2016)

    Google Scholar 

  57. Robles LY, Singh S, Fisichella PM (2015) Emerging enhanced imaging technologies of the esophagus: spectroscopy, confocal laser endomicroscopy, and optical coherence tomography. J Surg Res 195:502–514

    Article  Google Scholar 

  58. Gora MJ, Suter MJ, Tearney GJ, Li X (2017) Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. Biomed Opt Express 8:2405

    Article  Google Scholar 

  59. Leggett CL et al (2015) Comparative diagnostic performance of volumetric laser endomicroscopy and confocal laser endomicroscopy in the detection of dysplasia associated with Barrett’s esophagus. Gastrointest Endosc 83:880–888.e2

    Article  ADS  Google Scholar 

  60. Trindade AJ, George BJ, Berkowitz J, Sejpal DV, McKinley MJ (2016) Volumetric laser endomicroscopy can target neoplasia not detected by conventional endoscopic measures in long segment Barrett’s esophagus. Endosc Int Open 4:E318–E322

    Article  Google Scholar 

  61. NvisionVLE® Imaging System—NinePoint Medical. Available at: http://www.ninepointmedical.com/nvisionvle-imaging-system/. Accessed 1st Aug 2017

  62. Gora MJ et al (2013) Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat Med 19:238–240

    Article  Google Scholar 

  63. Gora MJ et al (2013) Imaging the upper gastrointestinal tract in unsedated patients using tethered capsule endomicroscopy. Gastroenterology 145:723–725

    Article  Google Scholar 

  64. Gora M et al (2016) Tethered capsule endomicroscopy: from bench to bedside at a primary care practice Tethered capsule endomicroscopy: from bench to bedside at a primary care practice. J Biomed Opt 21:104001

    Article  Google Scholar 

  65. Swager A et al (2015) Volumetric laser endomicroscopy in Barrett’s esophagus: a feasibility study on histological correlation. Dis Esophagus 1–8 (2015)

    Google Scholar 

  66. Tsai TH et al (2014) Endoscopic optical coherence angiography enables 3-dimensional visualization of subsurface microvasculature. Gastroenterology 147:1219–1221

    Article  Google Scholar 

  67. Lee HC et al (2017) Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett’s esophagus (with video). Gastrointest Endosc 86:476–484

    Article  ADS  Google Scholar 

  68. Suter MJ et al (2014) Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study. Gastrointest Endosc 79:886–896

    Article  ADS  Google Scholar 

  69. Ughi GJ et al (2016) Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy. Biomed Opt Express 7:660–665

    Article  Google Scholar 

  70. Lovat LB et al (2006) Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus. Gut 55:1078–1083

    Article  Google Scholar 

  71. Douplik A et al (2014) Diffuse reflectance spectroscopy in Barrett’s esophagus: developing a large field-of-view screening method discriminating dysplasia from metaplasia. J Biophotonics 7:304–311

    Article  Google Scholar 

  72. Perelman LT, Backman V (2016) Light scattering spectroscopy of epithelial tissue: principles and applications. In: Handbook of optical biomedical diagnostics. SPIE PRESS

    Google Scholar 

  73. Wallace M et al (2000) Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy. Gastroenterology 119:677–682

    Article  Google Scholar 

  74. Qiu L et al (2012) Spectral imaging with scattered light: from early cancer detection to cell biology. IEEE J Sel Top Quantum Electron 18:1073–1083

    Article  ADS  Google Scholar 

  75. Lee JH, Wang TD (2016) Molecular endoscopy for targeted imaging in the digestive tract. Lancet Gastroenterol Hepatol 1:147–155

    Article  Google Scholar 

  76. Terry NG et al (2011) Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements. Gastroenterology 140:42–50

    Article  Google Scholar 

  77. Yang JM et al (2015) Three-dimensional photoacoustic and ultrasonic endoscopic imaging of two rabbit esophagi. Proc SPIE 9323

    Google Scholar 

  78. Pfefer TJ, Paithankar DY, Poneros JM, Schomacker KT, Nishioka NS (2003) Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus. Lasers Surg Med 32:10–16

    Article  Google Scholar 

  79. Chen J, Wong S, Nathanson MH, Jain D (2014) Evaluation of Barrett esophagus by multiphoton microscopy. Arch Pathol Lab Med 138:204–212

    Article  Google Scholar 

  80. Joshi BP et al (2016) Multimodal endoscope can quantify wide-field fluorescence detection of Barrett’s neoplasia. Endoscopy 48

    Google Scholar 

  81. Wolfsen HC et al (2015) Safety and feasibility of volumetric laser endomicroscopy in patients with Barrett’s esophagus (with videos). Gastrointest Endosc 82:631–640

    Article  Google Scholar 

  82. Kim S et al (2016) Analyzing spatial correlations in tissue using angle-resolved low coherence interferometry measurements guided by co-located optical coherence tomography. Biomed Opt Express 7:1400

    Article  Google Scholar 

  83. Qi J, Elson DS (2016) A high definition Mueller polarimetric endoscope for tissue characterisation. Sci Rep 6:25953

    Article  ADS  Google Scholar 

  84. Ba C, Palmiere M, Ritt J, Mertz J (2016) Dual-modality endomicroscopy with co-registered fluorescence and phase contrast. Biomed Opt Express 7:3403

    Article  Google Scholar 

  85. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  Google Scholar 

  86. Tan ACS et al (2017) An overview of the clinical applications of optical coherence tomography angiography. Eye 1–25 (2017)

    Google Scholar 

  87. Kashani AH et al (2017) Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retinal Eye Res 60:66–100

    Article  Google Scholar 

  88. Wang LV, Yao J (2016) A practical guide to photoacoustic tomography in the life sciences. Nat Methods 13:627–638

    Article  Google Scholar 

  89. Yang J-M et al (2015) Optical-resolution photoacoustic endomicroscopy in vivo. Biomed Opt Express 6:918

    Article  Google Scholar 

  90. Dong B, Chen S, Zhang Z, Sun C, Zhang HF (2014) Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications. Opt Lett 39:4372–4375

    Article  ADS  Google Scholar 

  91. Bai X et al (2014) Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter. PLOS ONE 9:e92463

    Article  ADS  Google Scholar 

  92. Zackrisson S, van de Ven SMWY, Gambhir SS (2014) Light in and sound out: emerging translational strategies for photoacoustic imaging. Can Res 74:979–1004

    Article  Google Scholar 

  93. Marcu L (2012) Fluorescence lifetime techniques in medical applications. Ann Biomed Eng 40:304–331

    Article  Google Scholar 

  94. McGinty J et al (2010) Wide-field fluorescence lifetime imaging of cancer. Biomed Opt Express 1:627–640

    Article  Google Scholar 

  95. Sun Y et al (2010) Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery. J Biomed Opt 15:056022

    Article  Google Scholar 

  96. Cheng S et al (2013) Flexible endoscope for continuous in vivo multispectral fluorescence lifetime imaging. Opt Lett 38:1515–1517

    Article  ADS  Google Scholar 

  97. Sparks H et al (2015) A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue. J Biophotonics 8:168–178

    Article  Google Scholar 

  98. Sun Y et al (2013) Endoscopic fluorescence lifetime imaging for in vivo intraoperative diagnosis of oral carcinoma. Microsc Microanal (Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada) 19:791–798

    Article  ADS  Google Scholar 

  99. Gu M, Kang H, Li X (2014) Breaking the diffraction-limited resolution barrier in fiber-optical two-photon fluorescence endoscopy by an azimuthally-polarized beam. Sci Rep 4:3627

    Article  ADS  Google Scholar 

  100. Jermyn M et al (2016) A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology. Phys Med Biol 61:R370–R400

    Article  Google Scholar 

  101. Wang Z et al (2011) Use of multimode optical fibers for fiber-based coherent anti-stokes Raman scattering microendoscopy imaging. Opt Lett 36:2967–2969

    Article  ADS  Google Scholar 

  102. Légaré F, Evans CL, Ganikhanov F, Xie XS (2006) Towards CARS endoscopy. Opt Express 14:4427–4432

    Article  ADS  Google Scholar 

  103. Almond LM et al (2014) Endoscopic Raman spectroscopy enables objective diagnosis of dysplasia in Barrett’s esophagus. Gastrointest Endosc 79:37–45

    Article  ADS  Google Scholar 

  104. Jermyn M et al (2017) Highly accurate detection of cancer in situ with intraoperative, label-free, multimodal optical spectroscopy. Can Res 77:3942–3950

    Article  Google Scholar 

  105. Georgakoudi I et al (2001) Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus. Gastroenterology 120:1620–1629

    Article  Google Scholar 

  106. Lu G, Fei B (2014) Medical hyperspectral imaging: a review. J Biomed Opt 19:10901

    Article  Google Scholar 

  107. Luthman AS, Dumitru S, Quiros-Gonzalez I, Joseph J, Bohndiek SE (2017) Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array. J Biophotonics 10:840–853

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Jonathan Waterhouse .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waterhouse, D.J. (2019). Flexible Endoscopy: Early Detection of Dysplasia in Barrett’s Oesophagus. In: Novel Optical Endoscopes for Early Cancer Diagnosis and Therapy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-21481-4_2

Download citation

Publish with us

Policies and ethics