Skip to main content

Emerging Novel Therapies in Overcoming Resistance to Targeted Therapy

  • Chapter
  • First Online:
  • 468 Accesses

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 20))

Abstract

The recent development of small molecule inhibitors and monoclonal antibodies that target cancer-specific oncogenic driver mutations has significantly improved the outcomes of patients with various tumour types including chronic myeloid leukemia, non-small cell lung cancer and melanoma. Despite high rates of response, most patients will relapse within the first year of targeted therapy due to drug resistance. Although multiple mechanisms of resistance have been defined, these often lead to the re-activation of oncogene-regulated signaling or the activation of compensatory survival cascades. This chapter focusses on emerging therapeutic strategies to overcome and circumvent resistance to targeted therapies, with an emphasis on metastatic melanoma. A variety of therapeutic salvage approaches are being explored, including novel targeted agents, new combination therapies and consideration of drug timing and sequencing. Improved clinical trial design, treatment of earlier stage cancer patients and sensitive real-time monitoring of patient responses and resistance are critical for improving the durability of cancer targeted therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Response evaluation criteria in solid tumors (RECIST) is a set of guidelines used in the assessment of the change in tumor burden. It recommends evaluation of a maximum of five lesions (maximum two per organ) as target lesions. In addition, a pathological lymph node requires a short axis diameter of ≥15 mm to be assessable as target lesion. A complete response (CR) is disappearance of all target lesions or reduction of lymph node short axis to <10 mm, partial response (PR) is at least 30% decrease in the sum of diameters of target lesions and progressive disease (PD) is at least a 20% increase in the sum of diameters of target lesions or the appearance of new lesions and an absolute increase of at least 5 mm. Stable disease is defined as neither PR or PD.

Abbreviations

ALK:

Anaplastic lymphoma kinase

CI:

Confidence interval

CML:

Chronic myeloid leukemia

CTLA4:

Cytotoxic T-lymphocyte-associated protein 4

EGFR:

Epidermal growth factor receptor

FDA:

Food and drug administration

GIST:

Gastrointestinal stromal tumors

HR:

Hazard ratio

IGF1R:

Insulin-like growth factor 1 receptor

MAPK:

Mitogen-activated protein kinase

MITF:

Microphthalmia-associated transcription factor

mTOR:

Mammalian target of rapamycin

NF1:

Neurofibromin 1

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PD-1:

Programmed cell death protein 1

PDGFR:

Platelet-derived growth factor receptor

PFS:

Progression-free survival

PI3K:

Phosphoinositide 3-kinase

PTEN:

Phosphatase and tensin homologue

RECIST:

Response evaluation criteria in solid tumors

RTK:

Receptor tyrosine kinase

TK:

Tyrosine kinase

TKR:

Tyrosine kinase receptor

References

  1. Sawyers C. Targeted cancer therapy. Nature. 2004;432(7015):294–7. https://doi.org/10.1038/nature03095.

    Article  CAS  PubMed  Google Scholar 

  2. Weinstein IB. Cancer. Addiction to oncogenes-the Achilles heal of cancer. Science. 2002;297(5578):63–4. https://doi.org/10.1126/science.1073096.

    Article  CAS  PubMed  Google Scholar 

  3. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58. https://doi.org/10.1126/science.1235122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8. https://doi.org/10.1056/NEJMoa0909530.

    Article  CAS  PubMed  Google Scholar 

  5. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57. https://doi.org/10.1056/NEJMoa0810699.

    Article  CAS  PubMed  Google Scholar 

  6. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46. https://doi.org/10.1016/S1470-2045(11)70393-X.

    Article  CAS  PubMed  Google Scholar 

  7. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16. https://doi.org/10.1056/NEJMoa1103782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65. https://doi.org/10.1016/S0140-6736(12)60868-X.

    Article  CAS  PubMed  Google Scholar 

  9. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344(14):1038–42. https://doi.org/10.1056/NEJM200104053441402.

    Article  CAS  PubMed  Google Scholar 

  10. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5(3):172–83. https://doi.org/10.1038/nrc1567.

    Article  CAS  PubMed  Google Scholar 

  11. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17. https://doi.org/10.1056/NEJMoa062867.

    Article  CAS  PubMed  Google Scholar 

  12. Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11(12):865–78. https://doi.org/10.1038/nrc3143.

    Article  CAS  PubMed  Google Scholar 

  13. Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364(9440):1127–34. https://doi.org/10.1016/s0140-6736(04)17098-0.

    Article  CAS  PubMed  Google Scholar 

  14. Blanke CD, Rankin C, Demetri GD, Ryan CW, von Mehren M, Benjamin RS, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26(4):626–32. https://doi.org/10.1200/jco.2007.13.4452.

    Article  CAS  PubMed  Google Scholar 

  15. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–80. https://doi.org/10.1056/NEJMoa020461.

    Article  CAS  PubMed  Google Scholar 

  16. Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer. 2012;12(8):553–63. https://doi.org/10.1038/nrc3309.

    Article  CAS  PubMed  Google Scholar 

  17. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39. https://doi.org/10.1056/NEJMoa040938.

    Article  CAS  PubMed  Google Scholar 

  18. Bokemeyer C, Van Cutsem E, Rougier P, Ciardiello F, Heeger S, Schlichting M, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer. 2012;48(10):1466–75. https://doi.org/10.1016/j.ejca.2012.02.057.

    Article  CAS  PubMed  Google Scholar 

  19. Price TJ, Peeters M, Kim TW, Li J, Cascinu S, Ruff P, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 2014;15(6):569–79. https://doi.org/10.1016/S1470-2045(14)70118-4.

    Article  CAS  PubMed  Google Scholar 

  20. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92. https://doi.org/10.1056/nejm200103153441101.

    Article  CAS  PubMed  Google Scholar 

  21. Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–19. https://doi.org/10.1056/NEJMoa1113216.

    Article  CAS  PubMed  Google Scholar 

  22. Blackwell KL, Burstein HJ, Storniolo AM, Rugo H, Sledge G, Koehler M, et al. Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol. 2010;28(7):1124–30. https://doi.org/10.1200/jco.2008.21.4437.

    Article  CAS  PubMed  Google Scholar 

  23. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91. https://doi.org/10.1056/NEJMoa1209124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cameron D, Piccart-Gebhart MJ, Gelber RD, Procter M, Goldhirsch A, de Azambuja E, et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin adjuvant (HERA) trial. Lancet. 2017;389(10075):1195–205. https://doi.org/10.1016/s0140-6736(16)32616-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97. https://doi.org/10.1016/S0140-6736(10)61121-X.

    Article  CAS  PubMed  Google Scholar 

  26. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94. https://doi.org/10.1056/NEJMoa1214886.

    Article  CAS  PubMed  Google Scholar 

  27. Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71. https://doi.org/10.1056/NEJMoa1406766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akbani R, Akdemir Kadir C, Aksoy BA, Albert M, Ally A, Amin Samirkumar B, et al. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. https://doi.org/10.1016/j.cell.2015.05.044.

    Article  CAS  Google Scholar 

  29. Menzies AM, Haydu LE, Visintin L, Carlino MS, Howle JR, Thompson JF, et al. Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res. 2012;18(12):3242–9. https://doi.org/10.1158/1078-0432.ccr-12-0052.

    Article  CAS  PubMed  Google Scholar 

  30. McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R, et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15(3):323–32. https://doi.org/10.1016/S1470-2045(14)70012-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koelblinger P, Thuerigen O, Dummer R. Development of encorafenib for BRAF-mutated advanced melanoma. Curr Opin Oncol. 2018;30(2):125–33. https://doi.org/10.1097/CCO.0000000000000426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018;19(5):603–15. https://doi.org/10.1016/S1470-2045(18)30142-6.

    Article  CAS  PubMed  Google Scholar 

  33. Lim SY, Menzies AM, Rizos H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer. 2017;123(S11):2118–29. https://doi.org/10.1002/cncr.30435.

    Article  CAS  PubMed  Google Scholar 

  34. Long GV, Flaherty KT, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, et al. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol. 2017;28(7):1631–9. https://doi.org/10.1093/annonc/mdx176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(10):1315–27. https://doi.org/10.1016/s1470-2045(18)30497-2.

    Article  CAS  PubMed  Google Scholar 

  36. Arozarena I, Wellbrock C. Overcoming resistance to BRAF inhibitors. Ann Transl Med. 2017;5(19):387. https://doi.org/10.21037/atm.2017.06.09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahronian LG, Corcoran RB. Strategies for monitoring and combating resistance to combination kinase inhibitors for cancer therapy. Genome Med. 2017;9(1):37. https://doi.org/10.1186/s13073-017-0431-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21. https://doi.org/10.1016/j.cell.2009.12.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464(7287):427–30. https://doi.org/10.1038/nature08902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464(7287):431–5. https://doi.org/10.1038/nature08833.

    Article  CAS  PubMed  Google Scholar 

  41. Oberholzer PA, Kee D, Dziunycz P, Sucker A, Kamsukom N, Jones R, et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J Clin Oncol. 2012;30(3):316–21. https://doi.org/10.1200/JCO.2011.36.7680.

    Article  CAS  PubMed  Google Scholar 

  42. Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012;366(3):207–15. https://doi.org/10.1056/NEJMoa1105358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gibney GT, Messina JL, Fedorenko IV, Sondak VK, Smalley KS. Paradoxical oncogenesis—the long-term effects of BRAF inhibition in melanoma. Nat Rev Clin Oncol. 2013;10(7):390–9. https://doi.org/10.1038/nrclinonc.2013.83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Callahan MK, Rampal R, Harding JJ, Klimek VM, Chung YR, Merghoub T, et al. Progression of RAS-mutant leukemia during RAF inhibitor treatment. N Engl J Med. 2012;367(24):2316–21. https://doi.org/10.1056/NEJMoa1208958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Andrews MC, Behren A, Chionh F, Mariadason J, Vella LJ, Do H, et al. BRAF inhibitor-driven tumor proliferation in a KRAS-mutated colon carcinoma is not overcome by MEK1/2 inhibition. J Clin Oncol. 2013;31(35):e448–51. https://doi.org/10.1200/jco.2013.50.4118.

    Article  PubMed  Google Scholar 

  46. Amaravadi RK, Hamilton KE, Ma X, Piao S, Portillo AD, Nathanson KL, et al. Multiple gastrointestinal polyps in patients treated with BRAF inhibitors. Clin Cancer Res. 2015;21(23):5215–21. https://doi.org/10.1158/1078-0432.ccr-15-0469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carlos G, Anforth R, Clements A, Menzies AM, Carlino MS, Chou S, et al. Cutaneous toxic effects of BRAF inhibitors alone and in combination with MEK inhibitors for metastatic melanoma. JAMA Dermatol. 2015;151(10):1103–9. https://doi.org/10.1001/jamadermatol.2015.1745.

    Article  PubMed  Google Scholar 

  48. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9. https://doi.org/10.1056/NEJMoa1412690.

    Article  CAS  PubMed  Google Scholar 

  49. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386(9992):444–51. https://doi.org/10.1016/s0140-6736(15)60898-4.

    Article  CAS  PubMed  Google Scholar 

  50. Menzies AM, Haydu LE, Carlino MS, Azer MW, Carr PJ, Kefford RF, et al. Inter- and intra-patient heterogeneity of response and progression to targeted therapy in metastatic melanoma. PLoS One. 2014;9(1):e85004. https://doi.org/10.1371/journal.pone.0085004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bozic I, Nowak MA. Timing and heterogeneity of mutations associated with drug resistance in metastatic cancers. Proc Natl Acad Sci U S A. 2014;111(45):15964–8. https://doi.org/10.1073/pnas.1412075111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, et al. Evolutionary dynamics of cancer in response to targeted combination therapy. elife. 2013;2:e00747. https://doi.org/10.7554/eLife.00747.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. https://doi.org/10.1016/j.ejca.2008.10.026.

    Article  CAS  PubMed  Google Scholar 

  54. Long GV, Weber JS, Infante JR, Kim KB, Daud A, Gonzalez R, et al. Overall survival and durable responses in patients with BRAF V600-mutant metastatic melanoma receiving Dabrafenib combined with Trametinib. J Clin Oncol. 2016;34(8):871–8. https://doi.org/10.1200/jco.2015.62.9345.

    Article  CAS  PubMed  Google Scholar 

  55. Pagliarini R, Shao W, Sellers WR. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep. 2015;16(3):280–96. https://doi.org/10.15252/embr.201439949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Johnson DB, Menzies AM, Zimmer L, Eroglu Z, Ye F, Zhao S, et al. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur J Cancer. 2015;51(18):2792–9. https://doi.org/10.1016/j.ejca.2015.08.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rizos H, Menzies AM, Pupo GM, Carlino MS, Fung C, Hyman J, et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin Cancer Res. 2014;20(7):1965–77. https://doi.org/10.1158/1078-0432.CCR-13-3122.

    Article  CAS  PubMed  Google Scholar 

  58. Long GV, Fung C, Menzies AM, Pupo GM, Carlino MS, Hyman J, et al. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat Commun. 2014;5:5694. https://doi.org/10.1038/ncomms6694.

    Article  CAS  PubMed  Google Scholar 

  59. Hugo W, Shi H, Sun L, Piva M, Song C, Kong X, et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell. 2015;162(6):1271–85. https://doi.org/10.1016/j.cell.2015.07.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39. https://doi.org/10.1038/nrc2559.

    Article  CAS  PubMed  Google Scholar 

  61. Shi H, Moriceau G, Kong X, Lee MK, Lee H, Koya RC, et al. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat Commun. 2012;3:724. https://doi.org/10.1038/ncomms1727.

    Article  CAS  PubMed  Google Scholar 

  62. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011;480(7377):387–90. https://doi.org/10.1038/nature10662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18(6):683–95. https://doi.org/10.1016/j.ccr.2010.11.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE, et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 2008;68(12):4853–61. https://doi.org/10.1158/0008-5472.CAN-07-6787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shi H, Hugo W, Kong X, Hong A, Koya RC, Moriceau G, et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 2014;4(1):80–93. https://doi.org/10.1158/2159-8290.CD-13-0642.

    Article  CAS  PubMed  Google Scholar 

  66. Carlino MS, Fung C, Shahheydari H, Todd JR, Boyd SC, Irvine M, et al. Preexisting MEK1P124 mutations diminish response to BRAF inhibitors in metastatic melanoma patients. Clin Cancer Res. 2015;21(1):98–105. https://doi.org/10.1158/1078-0432.ccr-14-0759.

    Article  CAS  PubMed  Google Scholar 

  67. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7. https://doi.org/10.1038/nature09626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–4. https://doi.org/10.1038/nature11183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature. 2010;468(7326):968–72. https://doi.org/10.1038/nature09627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu H, Liu S, Zhang G, Bin W, Zhu Y, Frederick DT, et al. PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature. 2017;550(7674):133–6. https://doi.org/10.1038/nature24040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shen CH, Kim SH, Trousil S, Frederick DT, Piris A, Yuan P, et al. Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma. Nat Med. 2016;22(9):1056–61. https://doi.org/10.1038/nm.4155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Whittaker SR, Theurillat JP, Van Allen E, Wagle N, Hsiao J, Cowley GS, et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 2013;3(3):350–62. https://doi.org/10.1158/2159-8290.cd-12-0470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010;28(7):1254–61. https://doi.org/10.1200/jco.2009.24.6116.

    Article  CAS  PubMed  Google Scholar 

  74. Kuwano M, Sonoda K, Murakami Y, Watari K, Ono M. Overcoming drug resistance to receptor tyrosine kinase inhibitors: learning from lung cancer. Pharmacol Ther. 2016;161:97–110. https://doi.org/10.1016/j.pharmthera.2016.03.002.

    Article  CAS  PubMed  Google Scholar 

  75. Irvine M, Stewart A, Pedersen B, Boyd S, Kefford R, Rizos H. Oncogenic PI3K/AKT promotes the step-wise evolution of combination BRAF/MEK inhibitor resistance in melanoma. Oncogene. 2018;7(9):72. https://doi.org/10.1038/s41389-018-0081-3.

    Article  CAS  Google Scholar 

  76. Tanizaki J, Okamoto I, Okabe T, Sakai K, Tanaka K, Hayashi H, et al. Activation of HER family signaling as a mechanism of acquired resistance to ALK inhibitors in EML4-ALK-positive non-small cell lung cancer. Clin Cancer Res. 2012;18(22):6219–26. https://doi.org/10.1158/1078-0432.ccr-12-0392.

    Article  CAS  PubMed  Google Scholar 

  77. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007;104(52):20932–7. https://doi.org/10.1073/pnas.0710370104.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wilks ST. Potential of overcoming resistance to HER2-targeted therapies through the PI3K/Akt/mTOR pathway. Breast (Edinburgh, Scotland). 2015;24(5):548–55. https://doi.org/10.1016/j.breast.2015.06.002.

    Article  Google Scholar 

  79. Ahn A, Chatterjee A, Eccles MR. The slow cycling phenotype: a growing problem for treatment resistance in melanoma. Mol Cancer Ther. 2017;16(6):1002–9. https://doi.org/10.1158/1535-7163.mct-16-0535.

    Article  CAS  PubMed  Google Scholar 

  80. Kawakami A, Fisher DE. The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab Invest. 2017;97(6):649–56. https://doi.org/10.1038/labinvest.2017.9.

    Article  CAS  PubMed  Google Scholar 

  81. Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, Piris A, et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 2014;4(7):816–27. https://doi.org/10.1158/2159-8290.cd-13-0424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Muller J, Krijgsman O, Tsoi J, Robert L, Hugo W, Song C, et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun. 2014;5:5712. https://doi.org/10.1038/ncomms6712.

    Article  CAS  PubMed  Google Scholar 

  83. Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell. 2013;23(6):811–25. https://doi.org/10.1016/j.ccr.2013.05.003.

    Article  CAS  PubMed  Google Scholar 

  84. Ji Z, Erin Chen Y, Kumar R, Taylor M, Jenny Njauw CN, Miao B, et al. MITF modulates therapeutic resistance through EGFR signaling. J Invest Dermatol. 2015;135(7):1863–72. https://doi.org/10.1038/jid.2015.105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One. 2008;3(7):e2734. https://doi.org/10.1371/journal.pone.0002734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Haq R, Yokoyama S, Hawryluk EB, Jonsson GB, Frederick DT, McHenry K, et al. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc Natl Acad Sci U S A. 2013;110(11):4321–6. https://doi.org/10.1073/pnas.1205575110.

    Article  PubMed  PubMed Central  Google Scholar 

  87. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002;109(6):707–18.

    Article  CAS  PubMed  Google Scholar 

  88. Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014;4(1):94–109. https://doi.org/10.1158/2159-8290.Cd-13-0617.

    Article  PubMed  Google Scholar 

  89. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436(7047):117–22. https://doi.org/10.1038/nature03664.

    Article  CAS  PubMed  Google Scholar 

  90. Corre S, Tardif N, Mouchet N, Leclair HM, Boussemart L, Gautron A, et al. Sustained activation of the aryl hydrocarbon receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma. Nat Commun. 2018;9(1):4775. https://doi.org/10.1038/s41467-018-06951-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jiang X, Zhou J, Giobbie-Hurder A, Wargo J, Hodi FS. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res. 2013;19(3):598–609. https://doi.org/10.1158/1078-0432.ccr-12-2731.

    Article  CAS  PubMed  Google Scholar 

  92. Atefi M, Avramis E, Lassen A, Wong DJ, Robert L, Foulad D, et al. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res. 2014;20(13):3446–57. https://doi.org/10.1158/1078-0432.ccr-13-2797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kakavand H, Wilmott JS, Menzies AM, Vilain R, Haydu LE, Yearley JH, et al. PD-L1 expression and tumor-infiltrating lymphocytes define different subsets of MAPK inhibitor-treated melanoma patients. Clin Cancer Res. 2015;21(14):3140–8. https://doi.org/10.1158/1078-0432.ccr-14-2023.

    Article  CAS  PubMed  Google Scholar 

  94. Kakavand H, Rawson RV, Pupo GM, Yang JYH, Menzies AM, Carlino MS, et al. PD-L1 expression and immune escape in melanoma resistance to MAPK inhibitors. Clin Cancer Res. 2017;23(20):6054–61. https://doi.org/10.1158/1078-0432.ccr-16-1688.

    Article  CAS  PubMed  Google Scholar 

  95. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3(12):1355–63. https://doi.org/10.1158/2159-8290.cd-13-0310.

    Article  CAS  PubMed  Google Scholar 

  96. Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J, et al. Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin Cancer Res. 2015;21(17):4014–21. https://doi.org/10.1158/1078-0432.ccr-15-0016.

    Article  CAS  PubMed  Google Scholar 

  97. Su S, Dong ZY, Xie Z, Yan LX, Li YF, Su J, et al. Strong programmed death ligand 1 expression predicts poor response and de novo resistance to EGFR tyrosine kinase inhibitors among NSCLC patients with EGFR mutation. J Thorac Oncol. 2018;13:1668–75. https://doi.org/10.1016/j.jtho.2018.07.016.

    Article  PubMed  Google Scholar 

  98. Tung JN, Lin PL, Wang YC, Wu DW, Chen CY, Lee H. PD-L1 confers resistance to EGFR mutation-independent tyrosine kinase inhibitors in non-small cell lung cancer via upregulation of YAP1 expression. Oncotarget. 2018;9(4):4637–46. https://doi.org/10.18632/oncotarget.23161.

    Article  PubMed  Google Scholar 

  99. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26. https://doi.org/10.1126/scitranslmed.3002003.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Suda K, Rozeboom L, Rivard CJ, Yu H, Ellison K, Melnick MAC, et al. Therapy-induced E-cadherin downregulation alters expression of programmed death ligand-1 in lung cancer cells. Lung Cancer (Amsterdam, Netherlands). 2017;109:1–8. https://doi.org/10.1016/j.lungcan.2017.04.010.

    Article  PubMed Central  Google Scholar 

  101. Long GV, Eroglu Z, Infante J, Patel S, Daud A, Johnson DB, et al. Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma who received dabrafenib combined with trametinib. J Clin Oncol. 2018;36(7):667–73. https://doi.org/10.1200/jco.2017.74.1025.

    Article  CAS  PubMed  Google Scholar 

  102. Das Thakur M, Salangsang F, Landman AS, Sellers WR, Pryer NK, Levesque MP, et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature. 2013;494(7436):251–5. https://doi.org/10.1038/nature11814.

    Article  CAS  PubMed  Google Scholar 

  103. Valpione S, Carlino MS, Mangana J, Mooradian MJ, McArthur G, Schadendorf D, et al. Rechallenge with BRAF-directed treatment in metastatic melanoma: a multi-institutional retrospective study. Eur J Cancer. 2018;91:116–24. https://doi.org/10.1016/j.ejca.2017.12.007.

    Article  CAS  PubMed  Google Scholar 

  104. Carlino MS, Vanella V, Girgis C, Giannarelli D, Guminski A, Festino L, et al. Cessation of targeted therapy after a complete response in BRAF-mutant advanced melanoma: a case series. Br J Cancer. 2016;115(11):1280–4. https://doi.org/10.1038/bjc.2016.321.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rossini D, Cremolini C, Re MD, Lonardi S, Busico A, Rofi E, et al. Abstract CT088: efficacy of anti-EGFR rechallenge in RAS and BRAF wt metastatic colorectal cancer: clinical and translational results of the phase II CRICKET study by GONO. Cancer Res. 2018;78(13 Suppl):CT088-CT. https://doi.org/10.1158/1538-7445.am2018-ct088.

    Article  Google Scholar 

  106. Girotti MR, Lopes F, Preece N, Niculescu-Duvaz D, Zambon A, Davies L, et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell. 2015;27(1):85–96. https://doi.org/10.1016/j.ccell.2014.11.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang C, Spevak W, Zhang Y, Burton EA, Ma Y, Habets G, et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature. 2015;526(7574):583–6. https://doi.org/10.1038/nature14982.

    Article  CAS  PubMed  Google Scholar 

  108. Le K, Blomain ES, Rodeck U, Aplin AE. Selective RAF inhibitor impairs ERK1/2 phosphorylation and growth in mutant NRAS, vemurafenib-resistant melanoma cells. Pigment Cell Melanoma Res. 2013;26(4):509–17. https://doi.org/10.1111/pcmr.12092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Janku F, Vaishampayan UN, Khemka V, Bhatty M, Sherman EJ, Tao J, et al. Phase 1/2 precision medicine study of the next-generation BRAF inhibitor PLX8394. J Clin Oncol. 2018;36(15_Suppl):2583. https://doi.org/10.1200/JCO.2018.36.15_suppl.2583.

    Article  Google Scholar 

  110. Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer. 2015;15(10):577–92. https://doi.org/10.1038/nrc4000.

    Article  CAS  PubMed  Google Scholar 

  111. Gao Y, Chang MT, McKay D, Na N, Zhou B, Yaeger R, et al. Allele-specific mechanisms of activation of MEK1 mutants determine their properties. Cancer Discov. 2018;8(5):648–61. https://doi.org/10.1158/2159-8290.cd-17-1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Narita Y, Okamoto K, Kawada MI, Takase K, Minoshima Y, Kodama K, et al. Novel ATP-competitive MEK inhibitor E6201 is effective against vemurafenib-resistant melanoma harboring the MEK1-C121S mutation in a preclinical model. Mol Cancer Ther. 2014;13(4):823–32. https://doi.org/10.1158/1535-7163.mct-13-0667.

    Article  CAS  PubMed  Google Scholar 

  113. Tibes R, Borad MJ, Dutcus CE, Reyderman L, Feit K, Eisen A, et al. Safety, pharmacokinetics, and preliminary efficacy of E6201 in patients with advanced solid tumours, including melanoma: results of a phase 1 study. Br J Cancer. 2018;118(12):1580–5. https://doi.org/10.1038/s41416-018-0099-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96. https://doi.org/10.1056/NEJMoa1306494.

    Article  CAS  PubMed  Google Scholar 

  115. Yang K, Fu LW. Mechanisms of resistance to BCR-ABL TKIs and the therapeutic strategies: a review. Crit Rev Oncol Hematol. 2015;93(3):277–92. https://doi.org/10.1016/j.critrevonc.2014.11.001.

    Article  PubMed  Google Scholar 

  116. Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–40. https://doi.org/10.1056/NEJMoa1612674.

    Article  CAS  PubMed  Google Scholar 

  117. Montagut C, Argiles G, Ciardiello F, Poulsen TT, Dienstmann R, Kragh M, et al. Efficacy of Sym004 in patients with metastatic colorectal cancer with acquired resistance to anti-EGFR therapy and molecularly selected by circulating tumor DNA analyses: a phase 2 randomized clinical trial. JAMA Oncol. 2018;4(4):e175245. https://doi.org/10.1001/jamaoncol.2017.5245.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Carlino MS, Todd JR, Gowrishankar K, Mijatov B, Pupo GM, Fung C, et al. Differential activity of MEK and ERK inhibitors in BRAF inhibitor resistant melanoma. Mol Oncol. 2014;8(3):544–54. https://doi.org/10.1016/j.molonc.2014.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Germann UA, Furey BF, Markland W, Hoover RR, Aronov AM, Roix JJ, et al. Targeting the MAPK signaling pathway in cancer: promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (Ulixertinib). Mol Cancer Ther. 2017;16(11):2351–63. https://doi.org/10.1158/1535-7163.mct-17-0456.

    Article  CAS  PubMed  Google Scholar 

  120. Morris EJ, Jha S, Restaino CR, Dayananth P, Zhu H, Cooper A, et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 2013;3(7):742–50. https://doi.org/10.1158/2159-8290.cd-13-0070.

    Article  CAS  PubMed  Google Scholar 

  121. Hazar-Rethinam M, Kleyman M, Han GC, Liu D, Ahronian LG, Shahzade HA, et al. Convergent therapeutic strategies to overcome the heterogeneity of acquired resistance in BRAF(V600E) colorectal cancer. Cancer Discov. 2018;8(4):417–27. https://doi.org/10.1158/2159-8290.Cd-17-1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Moschos SJ, Sullivan RJ, Hwu WJ, Ramanathan RK, Adjei AA, Fong PC, et al. Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI insight. 2018;3(4) https://doi.org/10.1172/jci.insight.92352.

  123. Sullivan RJ, Infante JR, Janku F, Wong DJL, Sosman JA, Keedy V, et al. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov. 2018;8(2):184–95. https://doi.org/10.1158/2159-8290.cd-17-1119.

    Article  CAS  PubMed  Google Scholar 

  124. Chatterjee S, Bhattacharya S, Socinski MA, Burns TF. HSP90 inhibitors in lung cancer: promise still unfulfilled. Clin Adv Hematol Oncol. 2016;14(5):346–56.

    PubMed  Google Scholar 

  125. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res. 2012;18(1):64–76. https://doi.org/10.1158/1078-0432.ccr-11-1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Eroglu Z, Chen YA, Gibney GT, Weber JS, Kudchadkar RR, Khushalani NI, et al. Combined BRAF and HSP90 inhibition in patients with unresectable BRAF(V600E)-mutant melanoma. Clin Cancer Res. 2018;24:5516–24. https://doi.org/10.1158/1078-0432.ccr-18-0565.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Jameson KL, Mazur PK, Zehnder AM, Zhang J, Zarnegar B, Sage J, et al. IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat Med. 2013;19(5):626–30. https://doi.org/10.1038/nm.3165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ercan D, Xu C, Yanagita M, Monast CS, Pratilas CA, Montero J, et al. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Discov. 2012;2(10):934–47. https://doi.org/10.1158/2159-8290.cd-12-0103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Martinelli E, Morgillo F, Troiani T, Ciardiello F. Cancer resistance to therapies against the EGFR-RAS-RAF pathway: the role of MEK. Cancer Treat Rev. 2017;53:61–9. https://doi.org/10.1016/j.ctrv.2016.12.001.

    Article  CAS  PubMed  Google Scholar 

  130. Corcoran RB, Andre T, Atreya CE, Schellens JHM, Yoshino T, Bendell JC, et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAF(V600E)-mutant colorectal cancer. Cancer Discov. 2018;8(4):428–43. https://doi.org/10.1158/2159-8290.cd-17-1226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13(2):140–56. https://doi.org/10.1038/nrd4204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sweetlove M, Wrightson E, Kolekar S, Rewcastle GW, Baguley BC, Shepherd PR, et al. Inhibitors of pan-PI3K signaling synergize with BRAF or MEK inhibitors to prevent BRAF-mutant melanoma cell growth. Front Oncol. 2015;5:135. https://doi.org/10.3389/fonc.2015.00135.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sanchez-Hernandez I, Baquero P, Calleros L, Chiloeches A. Dual inhibition of (V600E)BRAF and the PI3K/AKT/mTOR pathway cooperates to induce apoptosis in melanoma cells through a MEK-independent mechanism. Cancer Lett. 2012;314(2):244–55. https://doi.org/10.1016/j.canlet.2011.09.037.

    Article  CAS  PubMed  Google Scholar 

  134. Atefi M, von Euw E, Attar N, Ng C, Chu C, Guo D, et al. Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway. PLoS One. 2011;6(12):e28973. https://doi.org/10.1371/journal.pone.0028973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Greger JG, Eastman SD, Zhang V, Bleam MR, Hughes AM, Smitheman KN, et al. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther. 2012;11(4):909–20. https://doi.org/10.1158/1535-7163.MCT-11-0989.

    Article  CAS  PubMed  Google Scholar 

  136. Shi H, Kong X, Ribas A, Lo RS. Combinatorial treatments that overcome PDGFRbeta-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res. 2011;71(15):5067–74. https://doi.org/10.1158/0008-5472.can-11-0140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Paraiso KH, Xiang Y, Rebecca VW, Abel EV, Chen YA, Munko AC, et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 2011;71(7):2750–60. https://doi.org/10.1158/0008-5472.can-10-2954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Villanueva J, Infante JR, Krepler C, Reyes-Uribe P, Samanta M, Chen HY, et al. Concurrent MEK2 mutation and BRAF amplification confer resistance to BRAF and MEK inhibitors in melanoma. Cell Rep. 2013;4(6):1090–9. https://doi.org/10.1016/j.celrep.2013.08.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rafii S, Roda D, Geuna E, Jimenez B, Rihawi K, Capelan M, et al. Higher risk of infections with PI3K-AKT-mTOR pathway inhibitors in patients with advanced solid tumors on phase I clinical trials. Clin Cancer Res. 2015;21(8):1869–76. https://doi.org/10.1158/1078-0432.ccr-14-2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tolcher AW, Patnaik A, Papadopoulos KP, Rasco DW, Becerra CR, Allred AJ, et al. Phase I study of the MEK inhibitor trametinib in combination with the AKT inhibitor afuresertib in patients with solid tumors and multiple myeloma. Cancer Chemother Pharmacol. 2015;75(1):183–9. https://doi.org/10.1007/s00280-014-2615-5.

    Article  CAS  PubMed  Google Scholar 

  141. Andre F, O’Regan R, Ozguroglu M, Toi M, Xu B, Jerusalem G, et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15(6):580–91. https://doi.org/10.1016/s1470-2045(14)70138-x.

    Article  CAS  PubMed  Google Scholar 

  142. Mangana J, Levesque MP, Karpova MB, Dummer R. Sorafenib in melanoma. Expert Opin Investig Drugs. 2012;21(4):557–68. https://doi.org/10.1517/13543784.2012.665872.

    Article  CAS  PubMed  Google Scholar 

  143. Eisen T, Ahmad T, Flaherty KT, Gore M, Kaye S, Marais R, et al. Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. Br J Cancer. 2006;95(5):581–6. https://doi.org/10.1038/sj.bjc.6603291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sakamuri D, Kato S, Huang HJ, Naing A, Holley VR, Patel S, et al. 404PDose escalation study of vemurafenib with crizotinib or sorafenib in patient with BRAF-mutated advance cancers. Ann Oncol. 2017;28(Suppl_5):mdx367.037. https://doi.org/10.1093/annonc/mdx367.037.

    Article  Google Scholar 

  145. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 2014;346(6216):1480–6. https://doi.org/10.1126/science.1254721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pasquini G, Giaccone G. C-MET inhibitors for advanced non-small cell lung cancer. Expert Opin Investig Drugs. 2018;27(4):363–75. https://doi.org/10.1080/13543784.2018.1462336.

    Article  CAS  PubMed  Google Scholar 

  147. Smith MP, Brunton H, Rowling EJ, Ferguson J, Arozarena I, Miskolczi Z, et al. Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell. 2016;29(3):270–84. https://doi.org/10.1016/j.ccell.2016.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Martin CA, Cullinane C, Kirby L, Abuhammad S, Lelliott EJ, Waldeck K, et al. Palbociclib synergizes with BRAF and MEK inhibitors in treatment naive melanoma but not after the development of BRAF inhibitor resistance. Int J Cancer. 2018;142(10):2139–52. https://doi.org/10.1002/ijc.31220.

    Article  CAS  PubMed  Google Scholar 

  149. Harris AL, Lee SE, Dawson LK, Marlow LA, Edenfield BH, Durham WF, et al. Targeting the cyclin dependent kinase and retinoblastoma axis overcomes standard of care resistance in BRAF (V600E) -mutant melanoma. Oncotarget. 2018;9(13):10905–19. https://doi.org/10.18632/oncotarget.23649.

    Article  PubMed  Google Scholar 

  150. Ascierto PA, Bechter O, Wolter P, Lebbe C, Elez E, Miller WH, et al. A phase Ib/II dose-escalation study evaluating triple combination therapy with a BRAF (encorafenib), MEK (binimetinib), and CDK 4/6 (ribociclib) inhibitor in patients (pts) with BRAF V600-mutant solid tumors and melanoma. J Clin Oncol. 2017;35(15_Suppl):9518. https://doi.org/10.1200/JCO.2017.35.15_suppl.9518.

    Article  Google Scholar 

  151. Didier R, Mallavialle A, Ben Jouira R, Domdom MA, Tichet M, Auberger P, et al. Targeting the proteasome-associated deubiquitinating enzyme USP14 impairs melanoma cell survival and overcomes resistance to MAPK-targeting therapies. Mol Cancer Ther. 2018;17(7):1416–29. https://doi.org/10.1158/1535-7163.Mct-17-0919.

    Article  CAS  PubMed  Google Scholar 

  152. Ohashi Y, Okamura M, Katayama R, Fang S, Tsutsui S, Akatsuka A, et al. Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors. Oncotarget. 2018;9(2):1641–55. https://doi.org/10.18632/oncotarget.22895.

    Article  PubMed  Google Scholar 

  153. Strub T, Ghiraldini FG, Carcamo S, Li M, Wroblewska A, Singh R, et al. SIRT6 haploinsufficiency induces BRAF(V600E) melanoma cell resistance to MAPK inhibitors via IGF signalling. Nat Commun. 2018;9(1):3440. https://doi.org/10.1038/s41467-018-05966-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Song C, Piva M, Sun L, Hong A, Moriceau G, Kong X, et al. Recurrent tumor cell-intrinsic and -extrinsic alterations during MAPKi-induced melanoma regression and early adaptation. Cancer Discov. 2017;7(11):1248–65. https://doi.org/10.1158/2159-8290.cd-17-0401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mattia G, Puglisi R, Ascione B, Malorni W, Care A, Matarrese P. Cell death-based treatments of melanoma: conventional treatments and new therapeutic strategies. Cell Death Dis. 2018;9(2):112. https://doi.org/10.1038/s41419-017-0059-7.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gallagher SJ, Gunatilake D, Beaumont KA, Sharp DM, Tiffen JC, Heinemann A, et al. HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. Int J Cancer. 2018;142(9):1926–37. https://doi.org/10.1002/ijc.31199.

    Article  CAS  PubMed  Google Scholar 

  157. Ibrahim N, Buchbinder EI, Granter SR, Rodig SJ, Giobbie-Hurder A, Becerra C, et al. A phase I trial of panobinostat (LBH589) in patients with metastatic melanoma. Cancer Med. 2016;5(11):3041–50. https://doi.org/10.1002/cam4.862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Xia C, Leon-Ferre R, Laux D, Deutsch J, Smith BJ, Frees M, et al. Treatment of resistant metastatic melanoma using sequential epigenetic therapy (decitabine and panobinostat) combined with chemotherapy (temozolomide). Cancer Chemother Pharmacol. 2014;74(4):691–7. https://doi.org/10.1007/s00280-014-2501-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bronte G, Bravaccini S, Bronte E, Burgio MA, Rolfo C, Delmonte A, et al. Epithelial-to-mesenchymal transition in the context of epidermal growth factor receptor inhibition in non-small-cell lung cancer. Biol Rev Camb Philos Soc. 2018;93(4):1735–46. https://doi.org/10.1111/brv.12416.

    Article  PubMed  Google Scholar 

  160. Duruisseaux M, Esteller M. Lung cancer epigenetics: from knowledge to applications. Semin Cancer Biol. 2018;51:116–28. https://doi.org/10.1016/j.semcancer.2017.09.005.

    Article  CAS  PubMed  Google Scholar 

  161. Chen MC, Chen CH, Wang JC, Tsai AC, Liou JP, Pan SL, et al. The HDAC inhibitor, MPT0E028, enhances erlotinib-induced cell death in EGFR-TKI-resistant NSCLC cells. Cell Death Dis. 2013;4:e810. https://doi.org/10.1038/cddis.2013.330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Han JY, Lee SH, Lee GK, Yun T, Lee YJ, Hwang KH, et al. Phase I/II study of gefitinib (Iressa((R))) and vorinostat (IVORI) in previously treated patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2015;75(3):475–83. https://doi.org/10.1007/s00280-014-2664-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Reguart N, Rosell R, Cardenal F, Cardona AF, Isla D, Palmero R, et al. Phase I/II trial of vorinostat (SAHA) and erlotinib for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations after erlotinib progression. Lung Cancer (Amsterdam, Netherlands). 2014;84(2):161–7. https://doi.org/10.1016/j.lungcan.2014.02.011.

    Article  Google Scholar 

  164. Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. 2012;18(4):521–8. https://doi.org/10.1038/nm.2713.

    Article  CAS  PubMed  Google Scholar 

  165. Welsh SJ, Rizos H, Scolyer RA, Long GV. Resistance to combination BRAF and MEK inhibition in metastatic melanoma: where to next? Eur J Cancer. 2016;62:76–85. https://doi.org/10.1016/j.ejca.2016.04.005.

    Article  CAS  PubMed  Google Scholar 

  166. Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF, et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res. 2012;18(5):1386–94. https://doi.org/10.1158/1078-0432.Ccr-11-2479.

    Article  CAS  PubMed  Google Scholar 

  167. Cooper ZA, Frederick DT, Juneja VR, Sullivan RJ, Lawrence DP, Piris A, et al. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology. 2013;2(10):e26615. https://doi.org/10.4161/onci.26615.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19(5):1225–31. https://doi.org/10.1158/1078-0432.Ccr-12-1630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Vella LJ, Pasam A, Dimopoulos N, Andrews M, Knights A, Puaux AL, et al. MEK inhibition, alone or in combination with BRAF inhibition, affects multiple functions of isolated normal human lymphocytes and dendritic cells. Cancer Immunol Res. 2014;2(4):351–60. https://doi.org/10.1158/2326-6066.Cir-13-0181.

    Article  CAS  PubMed  Google Scholar 

  170. Liu L, Mayes PA, Eastman S, Shi H, Yadavilli S, Zhang T, et al. The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin Cancer Res. 2015;21(7):1639–51. https://doi.org/10.1158/1078-0432.ccr-14-2339.

    Article  CAS  PubMed  Google Scholar 

  171. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. https://doi.org/10.1056/NEJMoa1412082.

    Article  CAS  PubMed  Google Scholar 

  174. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32. https://doi.org/10.1056/NEJMoa1503093.

    Article  CAS  PubMed  Google Scholar 

  175. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. https://doi.org/10.1056/NEJMoa1504030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cooper ZA, Juneja VR, Sage PT, Frederick DT, Piris A, Mitra D, et al. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol Res. 2014;2(7):643–54. https://doi.org/10.1158/2326-6066.Cir-13-0215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hu-Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci Transl Med. 2015;7(279):279ra41. https://doi.org/10.1126/scitranslmed.aaa4691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;17(5):286–301. https://doi.org/10.1038/nrc.2017.17.

    Article  CAS  PubMed  Google Scholar 

  179. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365–6. https://doi.org/10.1056/NEJMc1302338.

    Article  CAS  PubMed  Google Scholar 

  180. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44. https://doi.org/10.1016/j.cell.2016.02.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Amini-Adle M, Khanafer N, Le-Bouar M, Duru G, Dalle S, Thomas L. Ineffective anti PD-1 therapy after BRAF inhibitor failure in advanced melanoma. BMC Cancer. 2018;18(1):705. https://doi.org/10.1186/s12885-018-4618-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Amaria RN, Prieto PA, Tetzlaff MT, Reuben A, Andrews MC, Ross MI, et al. Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial. Lancet Oncol. 2018;19(2):181–93. https://doi.org/10.1016/s1470-2045(18)30015-9.

    Article  CAS  PubMed  Google Scholar 

  183. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33. https://doi.org/10.1056/NEJMoa1606774.

    Article  CAS  PubMed  Google Scholar 

  184. Karachaliou N, Gonzalez-Cao M, Sosa A, Berenguer J, Bracht JWP, Ito M, et al. The combination of checkpoint immunotherapy and targeted therapy in cancer. Ann Transl Med. 2017;5(19):388. https://doi.org/10.21037/atm.2017.06.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gettinger S, Hellmann MD, Chow LQM, Borghaei H, Antonia S, Brahmer JR, et al. Nivolumab plus erlotinib in patients with EGFR-mutant advanced NSCLC. J Thorac Oncol. 2018;13(9):1363–72. https://doi.org/10.1016/j.jtho.2018.05.015.

    Article  PubMed  Google Scholar 

  186. Moya-Horno I, Viteri S, Karachaliou N, Rosell R. Combination of immunotherapy with targeted therapies in advanced non-small cell lung cancer (NSCLC). Ther Adv Med Oncol. 2018;10:1758834017745012. https://doi.org/10.1177/1758834017745012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8. https://doi.org/10.1126/science.aaa4967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Goff SL, Dudley ME, Citrin DE, Somerville RP, Wunderlich JR, Danforth DN, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol. 2016;34(20):2389–97. https://doi.org/10.1200/jco.2016.66.7220.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Deniger DC, Kwong ML, Pasetto A, Dudley ME, Wunderlich JR, Langhan MM, et al. A pilot trial of the combination of vemurafenib with adoptive cell therapy in patients with metastatic melanoma. Clin Cancer Res. 2017;23(2):351–62. https://doi.org/10.1158/1078-0432.Ccr-16-0906.

    Article  CAS  PubMed  Google Scholar 

  190. Druker BJ. Circumventing resistance to kinase-inhibitor therapy. N Engl J Med. 2006;354(24):2594–6. https://doi.org/10.1056/NEJMe068073.

    Article  CAS  PubMed  Google Scholar 

  191. Das Thakur M, Stuart DD. The evolution of melanoma resistance reveals therapeutic opportunities. Cancer Res. 2013;73(20):6106–10. https://doi.org/10.1158/0008-5472.can-13-1633.

    Article  CAS  PubMed  Google Scholar 

  192. Ascierto PA, Margolin K. Ipilimumab before BRAF inhibitor treatment may be more beneficial than vice versa for the majority of patients with advanced melanoma. Cancer. 2014;120(11):1617–9. https://doi.org/10.1002/cncr.28622.

    Article  CAS  PubMed  Google Scholar 

  193. Lee JH, Long GV, Boyd S, Lo S, Menzies AM, Tembe V, et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol. 2017;28(5):1130–6. https://doi.org/10.1093/annonc/mdx026.

    Article  CAS  PubMed  Google Scholar 

  194. Gray ES, Rizos H, Reid AL, Boyd SC, Pereira MR, Lo J, et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget. 2015;6(39):42008–18. https://doi.org/10.18632/oncotarget.5788.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Long GV, Hauschild A, Santinami M, Atkinson V, Mandala M, Chiarion-Sileni V, et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med. 2017;377(19):1813–23. https://doi.org/10.1056/NEJMoa1708539.

    Article  CAS  PubMed  Google Scholar 

  196. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72. https://doi.org/10.1056/NEJMoa052306.

    Article  CAS  PubMed  Google Scholar 

  197. Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther. 2011;11(2):263–75. https://doi.org/10.1586/era.10.226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gomez HL, Doval DC, Chavez MA, Ang PC, Aziz Z, Nag S, et al. Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J Clin Oncol. 2008;26(18):2999–3005. https://doi.org/10.1200/jco.2007.14.0590.

    Article  CAS  PubMed  Google Scholar 

  199. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367(22):2075–88. https://doi.org/10.1056/NEJMoa1205127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–80. https://doi.org/10.1126/science.1062538.

    Article  CAS  PubMed  Google Scholar 

  201. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362(24):2260–70. https://doi.org/10.1056/NEJMoa1002315.

    Article  CAS  PubMed  Google Scholar 

  202. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007;110(10):3540–6. https://doi.org/10.1182/blood-2007-03-080689.

    Article  CAS  PubMed  Google Scholar 

  203. Heinrich MC, Maki RG, Corless CL, Antonescu CR, Harlow A, Griffith D, et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008;26(33):5352–9. https://doi.org/10.1200/jco.2007.15.7461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240–7. https://doi.org/10.1158/1078-0432.ccr-12-2246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370(13):1189–97. https://doi.org/10.1056/NEJMoa1311107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Shaw AT, Gandhi L, Gadgeel S, Riely GJ, Cetnar J, West H, et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol. 2016;17(2):234–42. https://doi.org/10.1016/s1470-2045(15)00488-x.

    Article  CAS  PubMed  Google Scholar 

  207. Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 2014;4(6):662–73. https://doi.org/10.1158/2159-8290.cd-13-0846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4(120):120ra17. https://doi.org/10.1126/scitranslmed.3003316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77. https://doi.org/10.1056/NEJMoa1408440.

    Article  CAS  PubMed  Google Scholar 

  210. Morais C. Sunitinib resistance in renal cell carcinoma. J Kidney Cancer VHL. 2014;1(1):1–11. https://doi.org/10.15586/jkcvhl.2014.7.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Choueiri TK, Escudier B, Powles T, Tannir NM, Mainwaring PN, Rini BI, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(7):917–27. https://doi.org/10.1016/s1470-2045(16)30107-3.

    Article  CAS  PubMed  Google Scholar 

  212. Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369(8):722–31. https://doi.org/10.1056/NEJMoa1303989.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

No potential conflicts of interest to disclose.

Funding: This work was supported by funding from NHMRC project grants 1130423 and 1093017. HR is supported by an NHMRC Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Rizos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinho, A.V., Lee, J.H., Rizos, H. (2019). Emerging Novel Therapies in Overcoming Resistance to Targeted Therapy. In: Szewczuk, M., Qorri, B., Sambi, M. (eds) Current Applications for Overcoming Resistance to Targeted Therapies. Resistance to Targeted Anti-Cancer Therapeutics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-21477-7_8

Download citation

Publish with us

Policies and ethics