Skip to main content

Novel Methods to Overcome Acquired Resistance to Immunotherapy

  • Chapter
  • First Online:
Current Applications for Overcoming Resistance to Targeted Therapies

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 20))

  • 529 Accesses

Abstract

The remarkable success of immunotherapy, including immune checkpoint blockade therapy (ICBT) in clinical settings, such as in melanoma patients and patients with DNA mismatch repair deficient tumors, has shifted the paradigm of cancer treatment. However, immunotherapy continues to face major challenges in controlling malignancy due to both intrinsic and acquired resistance mechanisms. Here, we discuss the mechanisms by which cancer immunotherapy has harnessed the immune system to target tumor progression, as well as the mechanisms of acquired resistance to immunotherapy. We also describe novel approaches in overcoming this resistance, with a particular focus on ICBT. We explore mechanisms by which tumor-intrinsic cues, tumor microenvironmental factors, and the host microbiome might impact the efficacy and resistance often seen during ICBT. Furthermore, we introduce technologies that will identify biomarkers from mouse and human models to predict clinical benefits for ICBT in cancer patients and promising emerging strategies to overcome ICBT resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

β2m:

Beta-2-microglobulin

A2AR:

Adenosine receptor

ADCC:

Antibody-dependent cell-mediated cytotoxicity

AKT:

Protein kinase B

APC:

Antigen-presenting cell

AXL:

Tyrosine-protein kinase receptor UFO

BATTLE-1:

Biomarker-integrated approaches of targeted therapy for lung cancer elimination

BCG:

Bacille Calmette-Guérin

CAF:

Cancer-associated fibroblast

CAR:

Chimeric antigen receptor

CDK:

Cyclin-dependent kinase

CK2:

Casein kinase 2

CT:

Computed tomography

ctDNA:

Circulating tumor DNA

CTLA-4:

Cytotoxic T-lymphocyte antigen 4

CTLs:

Cytotoxic T-cells

DAMPs:

Danger-associated molecular patterns

DC:

Dendritic cell

Eomes:

Eomesodermin

ERK:

Extracellular signal–regulated kinases

FAP:

Fibroblast activation protein

Fas:

Tumor necrosis factor receptor superfamily, member 6

FasL:

Fas ligand

FDA:

Food and Drug Administration

GADS:

GRB2-related adaptor downstream of Shc

GEM:

Genetically engineered mouse

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GRB2:

Growth factor receptor-bound protein 2

HMGB1:

High-mobility group box 1

ICBT:

Immune checkpoint blockade therapy

ICOS:

Inducible T-cell co-stimulator

IDO:

Indoleamine 2,3-dioxygenase

IFNGR:

Interferon-gamma receptor

IFN-α:

Interferon-alpha

IFN-γ:

Interferon-gamma

IL-2:

Interleukin-2

IL-4:

Interleukin-4

IRF:

Tripartite motif containing 63

JAK:

Janus kinases

KIR:

Killer cell immunoglobulin-like receptors

LAG-3:

Lymphocyte activation gene 3

LCK:

Lymphocyte-specific protein tyrosine kinase

LCMV:

Lymphocytic choriomeningitis virus

LOXL2:

Lysyl oxidase-like 2

MDSC:

Myeloid-derived suppressor cell

MHC:

Major histocompatibility complex

NCR:

Natural cytotoxicity receptors

NK:

Natural killer (cell)

PD-1:

Programmed death 1

PD-L1:

Programmed death-ligand 1

PD-L2:

Programmed death-ligand 2

PI3K:

Phosphoinositide 3-kinase

PIAS4:

Protein inhibitor of activated STAT 4

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

PKC:

Protein kinase C

PROSPECT:

Profiling of resistance patterns and oncogenic signaling pathways in evaluation of cancers of the thorax

PTEN:

Phosphatase and tensin homolog

RAR:

Retinoic acid receptor

RECIST:

Response evaluation criteria in solid tumors

ROR2:

Receptor tyrosine kinase-like orphan receptor 2

SCF:

Skp, Cullin, F-box containing complex

SHP-1:

Tyrosine-protein phosphatase non-receptor type 6

SHP-2:

Tyrosine-protein phosphatase non-receptor type 11

SMAD3:

Mothers against decapentaplegic homolog 3

SOCS1:

Suppressor of cytokine signaling 1

SOX3:

SRY-box 3

TAGLN:

Transgelin

T-bet:

T-box transcription factor 21

TCGA:

The Cancer Genome Atlas

TCR:

T-cell receptors

TGF-β:

Transforming growth factor-beta

TIM-3:

T-cell immunoglobulin and mucin domain 3

TME:

Tumor microenvironment

TNF:

Tumor necrosis factor

Tregs:

Regulatory T-cells

TWIST2:

Twist-related protein 2

VEGF:

Vascular endothelial growth factor

VISTA:

V-domain immunoglobulin suppressor of T-cell activation

WHO:

World Health Organization

WNT5A:

Wingless-type MMTV integration site family, member 5A

ZAP70:

Zeta-chain-associated protein kinase 70

References

  1. Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3:251.

    Article  Google Scholar 

  2. Busch W. Aus der Sitzung der medicinischen Section vom 13 November 1867. Berl Klin Wochenschr. 1868;5:137.

    Google Scholar 

  3. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res. 1991;(262):3–11.

    Google Scholar 

  4. Ribatti D. The concept of immune surveillance against tumors. The first theories. Oncotarget. 2017;8(4):7175–80. https://doi.org/10.18632/oncotarget.12739.

    Article  PubMed  Google Scholar 

  5. Herr HW, Morales A. History of bacillus Calmette-Guerin and bladder cancer: an immunotherapy success story. J Urol. 2008;179(1):53–6. https://doi.org/10.1016/j.juro.2007.08.122.

    Article  PubMed  Google Scholar 

  6. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37. https://doi.org/10.1038/nrc1782.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao X, Subramanian S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res. 2017;77(4):817–22. https://doi.org/10.1158/0008-5472.can-16-2379.

    Article  CAS  PubMed  Google Scholar 

  8. Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–6. https://doi.org/10.1158/1078-0432.ccr-10-3126.

    Article  PubMed  Google Scholar 

  9. Higano CS. Sipuleucel-T: autologous cellular immunotherapy for metastatic castration-resistant prostate cancer. New York: Springer; 2010.

    Book  Google Scholar 

  10. Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers (Basel). 2011;3(4):3856–93. https://doi.org/10.3390/cancers3043856.

    Article  CAS  Google Scholar 

  11. Baruch EN, Berg AL, Besser MJ, Schachter J, Markel G. Adoptive T cell therapy: an overview of obstacles and opportunities. Cancer. 2017;123(S11):2154–62. https://doi.org/10.1002/cncr.30491.

    Article  PubMed  Google Scholar 

  12. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. https://doi.org/10.1056/NEJMoa1407222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017–23. https://doi.org/10.1182/blood-2014-12-580068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 2016;107(10):1373–9. https://doi.org/10.1111/cas.13027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kohlhapp FJ, Kaufman HL. Molecular pathways: mechanism of action for Talimogene Laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 2016;22(5):1048–54. https://doi.org/10.1158/1078-0432.ccr-15-2667.

    Article  CAS  PubMed  Google Scholar 

  16. Lawler SE, Speranza MC, Cho CF, Chiocca EA. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 2016;3(6):841.

    Article  Google Scholar 

  17. Sansom DM. CD28, CTLA-4 and their ligands: who does what and to whom? Immunology. 2000;101(2):169–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shiratori T, Miyatake S, Ohno H, Nakaseko C, Isono K, Bonifacino JS, et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity. 1997;6(5):583–9.

    Article  CAS  PubMed  Google Scholar 

  19. Zuazo M, Gato-Canas M, Llorente N, Ibanez-Vea M, Arasanz H, Kochan G, et al. Molecular mechanisms of programmed cell death-1 dependent T cell suppression: relevance for immunotherapy. Ann Transl Med. 2017;5(19):385. https://doi.org/10.21037/atm.2017.06.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    Article  CAS  PubMed  Google Scholar 

  21. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–e41. https://doi.org/10.1016/s1470-2045(17)30607-1.

    Article  PubMed  Google Scholar 

  23. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao X, May A, Lou E, Subramanian S. Genotypic and phenotypic signatures to predict immune checkpoint blockade therapy response in patients with colorectal cancer. Transl Res. 2018;196:62–70. https://doi.org/10.1016/j.trsl.2018.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao X, Subramanian S. Oncogenic pathways that affect antitumor immune response and immune checkpoint blockade therapy. Pharmacol Ther. 2018;181:76–84. https://doi.org/10.1016/j.pharmthera.2017.07.004.

    Article  CAS  PubMed  Google Scholar 

  26. Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer. 2016;16(2):121–6. https://doi.org/10.1038/nrc.2016.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99. https://doi.org/10.1038/nri3862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354(6316):1165–9. https://doi.org/10.1126/science.aae0491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 2016;354(6316):1160–5. https://doi.org/10.1126/science.aaf2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016;167(6):1540–54.e12. https://doi.org/10.1016/j.cell.2016.11.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116. https://doi.org/10.1126/scitranslmed.3006504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shayan G, Srivastava R, Li J, Schmitt N, Kane LP, Ferris RL. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology. 2017;6(1):e1261779. https://doi.org/10.1080/2162402x.2016.1261779.

    Article  PubMed  Google Scholar 

  33. Zhu C, Anderson AC, Kuchroo VK. TIM-3 and its regulatory role in immune responses. Curr Top Microbiol Immunol. 2011;350:1–15. https://doi.org/10.1007/82_2010_84.

    Article  CAS  PubMed  Google Scholar 

  34. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016;7:10501. https://doi.org/10.1038/ncomms10501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang RY, Francois A, McGray AR, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6(1):e1249561. https://doi.org/10.1080/2162402x.2016.1249561.

    Article  PubMed  Google Scholar 

  36. Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 2017;23(5):551–5. https://doi.org/10.1038/nm.4308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010;107(9):4275–80. https://doi.org/10.1073/pnas.0915174107.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Allard B, Pommey S, Smyth MJ, Stagg J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res. 2013;19(20):5626–35. https://doi.org/10.1158/1078-0432.ccr-13-0545.

    Article  CAS  PubMed  Google Scholar 

  39. Chen S, Lee LF, Fisher TS, Jessen B, Elliott M, Evering W, et al. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res. 2015;3(2):149–60. https://doi.org/10.1158/2326-6066.cir-14-0118.

    Article  CAS  PubMed  Google Scholar 

  40. Du X, Tang F, Liu M, Su J, Zhang Y, Wu W, et al. A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Cell Res. 2018;28(4):416–32. https://doi.org/10.1038/s41422-018-0011-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arce Vargas F, Furness AJS, Litchfield K, Joshi K, Rosenthal R, Ghorani E, et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell. 2018;33(4):649–663.e4. https://doi.org/10.1016/j.ccell.2018.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Romano E, Kusio-Kobialka M, Foukas PG, Baumgaertner P, Meyer C, Ballabeni P, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci U S A. 2015;112(19):6140–5. https://doi.org/10.1073/pnas.1417320112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20(6):607–15. https://doi.org/10.1038/nm.3541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–7. https://doi.org/10.1073/pnas.1320318110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen L, Qiu X, Wang X, He J. FAP positive fibroblasts induce immune checkpoint blockade resistance in colorectal cancer via promoting immunosuppression. Biochem Biophys Res Commun. 2017;487(1):8–14. https://doi.org/10.1016/j.bbrc.2017.03.039.

    Article  CAS  PubMed  Google Scholar 

  46. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29. https://doi.org/10.1056/NEJMoa1604958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kouidhi S, Elgaaied AB, Chouaib S. Impact of metabolism on T-cell differentiation and function and cross talk with tumor microenvironment. Front Immunol. 2017;8:270. https://doi.org/10.3389/fimmu.2017.00270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kouidhi S, Noman MZ, Kieda C, Elgaaied AB, Chouaib S. Intrinsic and tumor microenvironment-induced metabolism adaptations of T cells and impact on their differentiation and function. Front Immunol. 2016;7:114. https://doi.org/10.3389/fimmu.2016.00114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Delgoffe GM. Filling the tank: keeping antitumor T cells metabolically fit for the Long Haul. Cancer Immunol Res. 2016;4(12):1001–6. https://doi.org/10.1158/2326-6066.cir-16-0244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buchert M, Burns CJ, Ernst M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene. 2016;35(8):939–51. https://doi.org/10.1038/onc.2015.150.

    Article  CAS  PubMed  Google Scholar 

  51. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28. https://doi.org/10.1146/annurev-med-051113-024537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167(2):397–404.e9. https://doi.org/10.1016/j.cell.2016.08.069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res. 2012;72(20):5209–18. https://doi.org/10.1158/0008-5472.can-12-1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang X, Schoenhals JE, Li A, Valdecanas DR, Ye H, Zang F, et al. Suppression of type I IFN signaling in tumors mediates resistance to anti-PD-1 treatment that can be overcome by radiotherapy. Cancer Res. 2017;77(4):839–50. https://doi.org/10.1158/0008-5472.can-15-3142.

    Article  CAS  PubMed  Google Scholar 

  55. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547(7664):413–8. https://doi.org/10.1038/nature23270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, et al. Interferon-gamma-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. Oncoimmunology. 2015;4(6):e1008824. https://doi.org/10.1080/2162402x.2015.1008824.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Villarino AV, Kanno Y, Ferdinand JR, O’Shea JJ. Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol. 2015;194(1):21–7. https://doi.org/10.4049/jimmunol.1401867.

    Article  CAS  PubMed  Google Scholar 

  58. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst. 1996;88(2):100–8.

    Article  CAS  PubMed  Google Scholar 

  59. del Campo AB, Kyte JA, Carretero J, Zinchencko S, Mendez R, Gonzalez-Aseguinolaza G, et al. Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer. 2014;134(1):102–13. https://doi.org/10.1002/ijc.28338.

    Article  CAS  PubMed  Google Scholar 

  60. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9. https://doi.org/10.1126/science.aaf1490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7(3):264–76. https://doi.org/10.1158/2159-8290.cd-16-0828.

    Article  CAS  PubMed  Google Scholar 

  62. Takeda K, Nakayama M, Hayakawa Y, Kojima Y, Ikeda H, Imai N, et al. IFN-gamma is required for cytotoxic T cell-dependent cancer genome immunoediting. Nat Commun. 2017;8:14607. https://doi.org/10.1038/ncomms14607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2017;168(3):542. https://doi.org/10.1016/j.cell.2017.01.010.

    Article  CAS  PubMed  Google Scholar 

  64. Falletta P, Sanchez-Del-Campo L, Chauhan J, Effern M, Kenyon A, Kershaw CJ, et al. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev. 2017;31(1):18–33. https://doi.org/10.1101/gad.290940.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009;69(7):2887–95. https://doi.org/10.1158/0008-5472.can-08-3343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lou Y, Diao L, Cuentas ER, Denning WL, Chen L, Fan YH, et al. Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clin Cancer Res. 2016;22(14):3630–42. https://doi.org/10.1158/1078-0432.ccr-15-1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, et al. The human microbiome project: a community resource for the healthy human microbiome. PLoS Biol. 2012;10(8):e1001377. https://doi.org/10.1371/journal.pbio.1001377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3. https://doi.org/10.1038/4441022a.

    Article  CAS  PubMed  Google Scholar 

  69. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. https://doi.org/10.1038/nature05414.

    Article  PubMed  Google Scholar 

  70. Turnbaugh PJ, REL MH, Fraser-Liggett C, Knight R, Gordon JI. The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature. 2007;449(7164):804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587(Pt 17):4153–8. https://doi.org/10.1113/jphysiol.2009.174136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, et al. The gut microbiome modulates colon tumorigenesis. MBio. 2013;4(6):e00692–13. https://doi.org/10.1128/mBio.00692-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hieken TJ, Chen J, Hoskin TL, Walther-Antonio M, Johnson S, Ramaker S, et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep. 2016;6:30751. https://doi.org/10.1038/srep30751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tsay JJ, Wu BG, Badri MH, Clemente JC, Shen N, Meyn P, et al. Airway microbiota is associated with up-regulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med. 2018;198:1188–98. https://doi.org/10.1164/rccm.201710-2118OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9. https://doi.org/10.1038/nature11552.

    Article  CAS  PubMed  Google Scholar 

  76. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Candon S, Perez-Arroyo A, Marquet C, Valette F, Foray AP, Pelletier B, et al. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes. PLoS One. 2015;10(5):e0125448. https://doi.org/10.1371/journal.pone.0125448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Abdollahi-Roodsaz S, Abramson SB, Scher JU. The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat Rev Rheumatol. 2016;12(8):446–55. https://doi.org/10.1038/nrrheum.2016.68.

    Article  CAS  PubMed  Google Scholar 

  80. Yuan C, Burns MB, Subramanian S, Blekhman R. Interaction between host micrornas and the gut microbiota in colorectal cancer. mSystems. 2018;3(3). https://doi.org/10.1128/mSystems.00205-17.

  81. Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. Protein Cell. 2010;1(8):718–25. https://doi.org/10.1007/s13238-010-0093-z.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101. https://doi.org/10.1038/nature12347.

    Article  CAS  PubMed  Google Scholar 

  83. Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep. 2014;16(10):406. https://doi.org/10.1007/s11912-014-0406-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goodman B, Gardner H. The microbiome and cancer. J Pathol. 2018;244:667–76.

    Article  PubMed  Google Scholar 

  85. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800–12. https://doi.org/10.1038/nrc3610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Boursi B, Mamtani R, Haynes K, Yang YX. Recurrent antibiotic exposure may promote cancer formation—another step in understanding the role of the human microbiota? Eur J Cancer. 2015;51(17):2655–64. https://doi.org/10.1016/j.ejca.2015.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, et al. Systemic immunity is required for effective cancer immunotherapy. Cell. 2017;168(3):487–502.e15. https://doi.org/10.1016/j.cell.2016.12.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. https://doi.org/10.1126/science.aan4236.

    Article  CAS  PubMed  Google Scholar 

  89. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–8. https://doi.org/10.1126/science.aao3290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33(4):570–80. https://doi.org/10.1016/j.ccell.2018.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7. https://doi.org/10.1126/science.aan3706.

    Article  CAS  PubMed  Google Scholar 

  92. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9. https://doi.org/10.1126/science.aac4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. https://doi.org/10.1126/science.aad1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 2017;19(10):848–55. https://doi.org/10.1016/j.neo.2017.08.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun. 2016;7:10391. https://doi.org/10.1038/ncomms10391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28(6):1368–79. https://doi.org/10.1093/annonc/mdx108.

    Article  CAS  PubMed  Google Scholar 

  97. Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and anticancer immunosurveillance. Cell. 2016;165(2):276–87. https://doi.org/10.1016/j.cell.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  98. Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, Kirschning C, et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity. 2012;37(1):171–86. https://doi.org/10.1016/j.immuni.2012.05.020.

    Article  CAS  PubMed  Google Scholar 

  99. Felices M, Lenvik TR, Davis ZB, Miller JS, Vallera DA. Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. Methods Mol Biol. 2016;1441:333–46. https://doi.org/10.1007/978-1-4939-3684-7_28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rezvani K, Rouce R, Liu E, Shpall E. Engineering natural killer cells for cancer immunotherapy. Mol Ther. 2017;25(8):1769–81. https://doi.org/10.1016/j.ymthe.2017.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5(12):1282–95. https://doi.org/10.1158/2159-8290.cd-15-1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fischer J, Paret C, El Malki K, Alt F, Wingerter A, Neu MA, et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J Immunother. 2017;40(5):187–95. https://doi.org/10.1097/cji.0000000000000169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pardoll DM. Distinct mechanisms of tumor resistance to NK killing: of mice and men. Immunity. 2015;42(4):605–6. https://doi.org/10.1016/j.immuni.2015.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lowry LE, Zehring WA. Potentiation of natural killer cells for cancer immunotherapy: a review of literature. Front Immunol. 2017;8:1061. https://doi.org/10.3389/fimmu.2017.01061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med. 2018;24(10):1499–503. https://doi.org/10.1038/s41591-018-0201-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Braig F, Brandt A, Goebeler M, Tony HP, Kurze AK, Nollau P, et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. 2017;129(1):100–4. https://doi.org/10.1182/blood-2016-05-718395.

    Article  CAS  PubMed  Google Scholar 

  107. van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120(4):1265–74. https://doi.org/10.1172/JCI39748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Orlando EJ, Han X, Tribouley C, Wood PA, Leary RJ, Riester M, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24(10):1504–6. https://doi.org/10.1038/s41591-018-0146-z.

    Article  CAS  PubMed  Google Scholar 

  109. Ribas A, Chmielowski B, Glaspy JA. Do we need a different set of response assessment criteria for tumor immunotherapy? Clin Cancer Res. 2009;15:7116–8.

    Article  CAS  PubMed  Google Scholar 

  110. Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20.

    Article  CAS  PubMed  Google Scholar 

  111. Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6(8):827–37.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, Samstein RM, et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol. 2012;13(10):1010–9. https://doi.org/10.1038/ni.2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van der Vaart M, Pretorius PJ. Circulating DNA. Its origin and fluctuation. Ann N Y Acad Sci. 2008;1137:18–26. https://doi.org/10.1196/annals.1448.022.

    Article  CAS  PubMed  Google Scholar 

  114. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90. https://doi.org/10.1038/nm.1789.

    Article  CAS  PubMed  Google Scholar 

  115. Ma M, Zhu H, Zhang C, Sun X, Gao X, Chen G. “Liquid biopsy”-ctDNA detection with great potential and challenges. Ann Transl Med. 2015;3(16):235. https://doi.org/10.3978/j.issn.2305-5839.2015.09.29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gray ES, Rizos H, Reid AL, Boyd SC, Pereira MR, Lo J, et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget. 2015;6(39):42008–18. https://doi.org/10.18632/oncotarget.5788.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Goldberg SB, Narayan A, Kole AJ, Decker RH, Teysir J, Carriero NJ, et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin Cancer Res. 2018;24(8):1872–80. https://doi.org/10.1158/1078-0432.ccr-17-1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee JH, Long GV, Boyd S, Lo S, Menzies AM, Tembe V, et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol. 2017;28(5):1130–6. https://doi.org/10.1093/annonc/mdx026.

    Article  CAS  PubMed  Google Scholar 

  119. Lipson EJ, Velculescu VE, Pritchard TS, Sausen M, Pardoll DM, Topalian SL, et al. Circulating tumor DNA analysis as a real-time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade. J Immunother Cancer. 2014;2(1):42. https://doi.org/10.1186/s40425-014-0042-0.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13. https://doi.org/10.1126/science.aan6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Behrmann J, Etmann C, Boskamp T, Casadonte R, Kriegsmann J, Maass P. Deep learning for tumor classification in imaging mass spectrometry. Bioinformatics. 2018;34(7):1215–23. https://doi.org/10.1093/bioinformatics/btx724.

    Article  CAS  PubMed  Google Scholar 

  122. Mao X, He J, Li T, Lu Z, Sun J, Meng Y, et al. Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors. Sci Rep. 2016;6:21043. https://doi.org/10.1038/srep21043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Leelatian N, Doxie DB, Greenplate AR, Mobley BC, Lehman JM, Sinnaeve J, et al. Single cell analysis of human tissues and solid tumors with mass cytometry. Cytometry B Clin Cytom. 2017;92(1):68–78. https://doi.org/10.1002/cyto.b.21481.

    Article  CAS  PubMed  Google Scholar 

  124. Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332(6030):687–96. https://doi.org/10.1126/science.1198704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4. https://doi.org/10.1038/nature09807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84. https://doi.org/10.1038/nrclinonc.2013.110.

    Article  CAS  PubMed  Google Scholar 

  127. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–23. https://doi.org/10.1373/clinchem.2014.222679.

    Article  CAS  PubMed  Google Scholar 

  128. Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014;21(1):15–25. https://doi.org/10.1038/cdd.2013.67.

    Article  CAS  PubMed  Google Scholar 

  129. Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016;44(2):343–54. https://doi.org/10.1016/j.immuni.2015.11.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Aoto K, Mimura K, Okayama H, Saito M, Chida S, Noda M, et al. Immunogenic tumor cell death induced by chemotherapy in patients with breast cancer and esophageal squamous cell carcinoma. Oncol Rep. 2018;39(1):151–9. https://doi.org/10.3892/or.2017.6097.

    Article  CAS  PubMed  Google Scholar 

  131. Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene. 2016;35(46):5931–41. https://doi.org/10.1038/onc.2016.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sharabi AB, Lim M, DeWeese TL, Drake CG. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015;16(13):e498–509. https://doi.org/10.1016/s1470-2045(15)00007-8.

    Article  PubMed  Google Scholar 

  133. Gupta A, Probst HC, Vuong V, Landshammer A, Muth S, Yagita H, et al. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J Immunol. 2012;189(2):558–66. https://doi.org/10.4049/jimmunol.1200563.

    Article  CAS  PubMed  Google Scholar 

  134. Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget. 2014;5(2):403–16. https://doi.org/10.18632/oncotarget.1719.

    Article  PubMed  Google Scholar 

  135. Park B, Yee C, Lee KM. The effect of radiation on the immune response to cancers. Int J Mol Sci. 2014;15(1):927–43. https://doi.org/10.3390/ijms15010927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Prendergast GC, Malachowski WP, DuHadaway JB, Muller AJ. Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res. 2017;77(24):6795–811. https://doi.org/10.1158/0008-5472.can-17-2285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Leone RD, Lo YC, Powell JD. A2aR antagonists: next generation checkpoint blockade for cancer immunotherapy. Comput Struct Biotechnol J. 2015;13:265–72. https://doi.org/10.1016/j.csbj.2015.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Terranova-Barberio M, Thomas S, Munster PN. Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors. Immunotherapy. 2016;8(6):705–19. https://doi.org/10.2217/imt-2016-0014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chae YK, Arya A, Iams W, Cruz MR, Chandra S, Choi J, et al. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J Immunother Cancer. 2018;6(1):39. https://doi.org/10.1186/s40425-018-0349-3.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170(6):1120–33.e17. https://doi.org/10.1016/j.cell.2017.07.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010;115(17):3520–30. https://doi.org/10.1182/blood-2009-09-246124.

    Article  CAS  PubMed  Google Scholar 

  142. Lowe D. IDO inhibitors hit a wall. Science. 2018. http://blogs.sciencemag.org/pipeline/archives/2018/04/09/ido-inhibitors-hit-a-wall. Accessed 9 Jul 2018.

  143. Olson B, Li Y, Lin Y, Liu ET, Patnaik A. Mouse models for cancer immunotherapy research. Cancer Discov. 2018;8(11):1358–65. https://doi.org/10.1158/2159-8290.CD-18-0044.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70. https://doi.org/10.1126/science.1240527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbaya Subramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, X., Yuan, C., Rieth, J.M., Wangmo, D., Subramanian, S. (2019). Novel Methods to Overcome Acquired Resistance to Immunotherapy. In: Szewczuk, M., Qorri, B., Sambi, M. (eds) Current Applications for Overcoming Resistance to Targeted Therapies. Resistance to Targeted Anti-Cancer Therapeutics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-21477-7_4

Download citation

Publish with us

Policies and ethics