Skip to main content

Nanomedicine and Drug Delivery Systems in Overcoming Resistance to Targeted Therapy

  • Chapter
  • First Online:
  • 455 Accesses

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 20))

Abstract

The first nanomedicine was approved for clinical use over 20 years ago. In the intervening time, our ability to engineer materials at the nanoscale has advanced immensely, yet a revolution in targeted drug delivery remains elusive. Nowhere is this more keenly felt than in the treatment of multi-drug resistant cancers, where nanotechnology’s fine control over drug release rate, location, and sequence promises a suite of tools for the effective long-term management of disease. This chapter provides a survey of the current knowledge and trajectory of nanomaterial drug delivery systems for avoiding or overcoming multiple drug resistance in cancer treatment. Existing nanocarriers in development incorporate a variety of materials and properties designed to transit through the circulatory system, concentrate at tumor sites, selectively bind to cancerous cells, and release their drug payloads. However, a greater understanding of the biological barriers to achieving each of those steps is still needed for drug delivery systems to successfully translate into clinical treatment. Greater attention on the interactions between specific delivery systems and their specific target cells in vivo might be achieved through a ‘disease-first’ design strategy and closer integration of materials and physiology during training.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

EPR:

Enhanced permeability and retention

FDA:

United States Food and Drug Administration

MDR:

Multiple drug resistant

NP:

Nanoparticle

PEG:

Polyethylene glycol

TME:

Tumour microenvironment

References

  1. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.. https://doi.org/10.1016/j.addr.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  2. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57. https://doi.org/10.1016/j.jconrel.2014.12.030.

    Article  CAS  PubMed  Google Scholar 

  3. Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017;42(12):742–55.

    PubMed  PubMed Central  Google Scholar 

  4. Castillo RR, Colilla M, Vallet-Regí M. Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin Drug Deliv. 2017;14(2):229–43. https://doi.org/10.1080/17425247.2016.1211637.

    Article  CAS  PubMed  Google Scholar 

  5. Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. J Control Release. 2012;162(1):45–55. https://doi.org/10.1016/j.jconrel.2012.05.051.

    Article  CAS  PubMed  Google Scholar 

  6. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87. https://doi.org/10.1007/s11095-016-1958-5.

    Article  CAS  PubMed  Google Scholar 

  7. Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(1). https://doi.org/10.1002/wnan.1416.

    Google Scholar 

  8. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev. 2013;65(13–14):1866–79. https://doi.org/10.1016/j.addr.2013.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barenholz Y. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34. https://doi.org/10.1016/j.jconrel.2012.03.020.

    Article  CAS  PubMed  Google Scholar 

  10. Hu X, Hu J, Tian J, Ge Z, Zhang G, Luo K, Liu S. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J Am Chem Soc. 2013;135(46):17617–29. https://doi.org/10.1021/ja409686x.

    Article  CAS  PubMed  Google Scholar 

  11. Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PLR, Hammond PT, Yang YY. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev. 2011;63(14–15):1228–46. https://doi.org/10.1016/j.addr.2011.06.016.

    Article  CAS  PubMed  Google Scholar 

  12. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007;2(4):249–55. https://doi.org/10.1038/nnano.2007.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li X, McTaggart M, Malardier-Jugroot C. Synthesis and characterization of a pH responsive folic acid functionalized polymeric drug delivery system. Biophys Chem. 2016;214–215:17–26. https://doi.org/10.1016/j.bpc.2016.04.002.

    Article  CAS  PubMed  Google Scholar 

  14. Livney YD, Assaraf YG. Rationally designed nanovehicles to overcome cancer chemoresistance. Adv Drug Deliv Rev. 2013;65(13–14):1716–30. https://doi.org/10.1016/j.addr.2013.08.006.

    Article  CAS  PubMed  Google Scholar 

  15. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60. https://doi.org/10.1038/nnano.2007.387.

    Article  CAS  PubMed  Google Scholar 

  16. Battaglia G, Ryan AJ. Effect of amphiphile size on the transformation from a lyotropic gel to a vesicular dispersion. Macromolecules. 2006;39(2):798–805. https://doi.org/10.1021/ma052108a.

    Article  CAS  Google Scholar 

  17. Du X, Zhao C, Zhou M, Ma T, Huang H, Jaroniec M, Zhang X, Qiao SZ. Hollow carbon nanospheres with tunable hierarchical pores for drug, gene, and photothermal synergistic treatment. Small. 2017;13(6):1–11. https://doi.org/10.1002/smll.201602592.

    Article  CAS  Google Scholar 

  18. Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, Cheng Q, Huo S, Liang Z, Fermeglia M, et al. Anticancer Drug Nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc Natl Acad Sci. 2015;112(10):2978–83. https://doi.org/10.1073/pnas.1418494112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guillot-Nieckowski M, Eisler S, Diederich F. Dendritic vectors for gene transfection. New J Chem. 2007:1111–27. https://doi.org/10.1039/b614877h.

    Article  CAS  Google Scholar 

  20. Wu X, Zhang Y, Takle K, Bilsel O, Li Z, Lee H, Zhang Z, Li D, Fan W, Duan C, et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano. 2016;10(1):1060–6. https://doi.org/10.1021/acsnano.5b06383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeyaraman J, Malecka A, Billimoria P, Shukla A, Marandi B, Patel PM, Jackson AM, Sivakumar S. Immuno-silent polymer capsules encapsulating nanoparticles for bioimaging applications. J Mater Chem B. 2017;5(26):5251–8. https://doi.org/10.1039/c7tb01044c.

    Article  CAS  PubMed  Google Scholar 

  22. Yang J, Zhang Q, Chang H, Cheng Y. Surface-engineered dendrimers in gene delivery. Chem Rev. 2015;115(11):5274–300. https://doi.org/10.1021/cr500542t.

    Article  CAS  PubMed  Google Scholar 

  23. Thompson JMT. Basic principles in the general theory of elastic stability. J Mech Phys Solids. 1963;11(1):13–20. https://doi.org/10.1016/j.drudis.2016.12.007.

    Article  CAS  Google Scholar 

  24. Wang D, Zhao T, Zhu X, Yan D, Wang W. Bioapplications of hyperbranched polymers. Chem Soc Rev. 2015;44(12):4023–71. https://doi.org/10.1039/c4cs00229f.

    Article  CAS  PubMed  Google Scholar 

  25. Svenson S. The dendrimer paradox-high medical expectations but poor clinical translation. Chem Soc Rev. 2015;44(12):4131–44. https://doi.org/10.1039/c5cs00288e.

    Article  CAS  PubMed  Google Scholar 

  26. He Q, Shi J. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv Mater. 2014;26(3):391–411. https://doi.org/10.1002/adma.201303123.

    Article  CAS  PubMed  Google Scholar 

  27. Soenen SJ, Parak WJ, Rejman J, Manshian B. (Intra) cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev. 2015;115(5):2109–35. https://doi.org/10.1021/cr400714j.

    Article  CAS  PubMed  Google Scholar 

  28. Anselmo AC, Mitragotri S. A review of clinical translation of inorganic nanoparticles. AAPS J. 2015;17(5):1041–54. https://doi.org/10.1208/s12248-015-9780-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manzano M, Vallet-regí M. Mesoporous silica nanoparticles in nanomedicine applications. J Mater Sci Mater Med. 2018;29:65. https://doi.org/10.1007/s10856-018-6069-x.

    Article  CAS  PubMed  Google Scholar 

  30. Klose D, Siepmann F, Elkharraz K, Krenzlin S, Siepmann J. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int J Pharm. 2006;314(2):198–206. https://doi.org/10.1016/j.ijpharm.2005.07.031.

    Article  CAS  PubMed  Google Scholar 

  31. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2(5):889–96. https://doi.org/10.1021/nn800072t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. https://doi.org/10.1038/nrc.2016.108.

    Article  CAS  PubMed  Google Scholar 

  33. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A. Prolonged circulating time and enhenced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;54:987–92.

    CAS  PubMed  Google Scholar 

  34. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419–36. https://doi.org/10.2165/00003088-200342050-00002.

    Article  CAS  PubMed  Google Scholar 

  35. Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17–18):812–8. https://doi.org/10.1016/j.drudis.2006.07.005.

    Article  CAS  PubMed  Google Scholar 

  36. Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem. 2010;21:797–802. https://doi.org/10.1021/bc100070g.

    Article  CAS  PubMed  Google Scholar 

  37. Maeda H, Tsukigawa K, Fang J. A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy—problems, solutions, and prospects. Microcirculation. 2016;23(3):173–82. https://doi.org/10.1111/micc.12228.

    Article  CAS  PubMed  Google Scholar 

  38. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6. https://doi.org/10.1016/j.addr.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  39. Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li T. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release. 2013;172(1):12–21. https://doi.org/10.1016/j.jconrel.2013.06.039.

    Article  CAS  PubMed  Google Scholar 

  40. Nichols JW, Han Y. EPR: evidence and fallacy. J Control Release. 2014;190:451–64. https://doi.org/10.1016/j.jconrel.2014.03.057.

    Article  CAS  PubMed  Google Scholar 

  41. Gao C, Bhattarai P, Chen M, Zhang N, Hameed S, Yue X, Dai Z. Amphiphilic drug conjugates as nanomedicines for combined cancer therapy. Bioconjug Chem. 2018;29(12):3967–81. https://doi.org/10.1021/acs.bioconjchem.8b00692.

    Article  CAS  PubMed  Google Scholar 

  42. Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV. Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol. 2009;5(1):42–7. https://doi.org/10.1038/nnano.2009.314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bradley AJ, Devine DV, Ansell SM, Janzen J, Brooks DE. Inhibition of liposome-induced complement activation by incorporated poly (ethylene glycol)-lipids. Arch Biochem Biophys. 1998;357(2):185–94. https://doi.org/10.1006/abbi.1998.0798.

    Article  CAS  PubMed  Google Scholar 

  44. Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 2009;9(6):2354–9. https://doi.org/10.1021/nl900872r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. rationale for use in solid tumours. Drugs. 1997;54(Suppl 4):15–21.

    Article  CAS  PubMed  Google Scholar 

  46. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21. https://doi.org/10.1038/nrd1033.

    Article  CAS  PubMed  Google Scholar 

  47. Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat. 2016;29:90–106. https://doi.org/10.1016/j.drup.2016.10.003.

    Article  PubMed  Google Scholar 

  48. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2016;17(1):20–37. https://doi.org/10.1038/nrc.2016.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jin Q, Deng Y, Chen X, Ji J. Rational design of cancer nanomedicine for simultaneous stealth surface and enhanced cellular uptake. ACS Nano. 2019;13:954–77. https://doi.org/10.1021/acsnano.8b07746.

    Article  CAS  PubMed  Google Scholar 

  50. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93(March):52–79. https://doi.org/10.1016/j.ejpb.2015.03.018.

    Article  CAS  PubMed  Google Scholar 

  51. Ma P, Chen J, Bi X, Li Z, Gao X, Li H, Zhu H, Huang Y, Qi J, Zhang Y. Overcoming multidrug resistance through the GLUT1-mediated and enzyme-triggered mitochondrial targeting conjugate with redox-sensitive paclitaxel release. ACS Appl Mater Interfaces. 2018;10(15):12351–63. https://doi.org/10.1021/acsami.7b18437.

    Article  CAS  PubMed  Google Scholar 

  52. Kirtane AR, Kalscheuer SM, Panyam J. Exploiting nanotechnology to overcome tumor drug resistance: challenges and opportunities. Adv Drug Deliv Rev. 2013;65(13–14):1731–47. https://doi.org/10.1016/j.addr.2013.09.001.

    Article  CAS  PubMed  Google Scholar 

  53. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51. https://doi.org/10.1038/nbt.3330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popovic Z, Jain RK, Bawendi MG, Fukumura D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A. 2011;108(6):2426–31. https://doi.org/10.1073/pnas.1018382108.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chou LYT, Ming K, Chan WCW. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev. 2011;40(1):233–45. https://doi.org/10.1039/C0CS00003E.

    Article  CAS  PubMed  Google Scholar 

  56. Decuzzi P, Lee S, Bhushan B, Ferrari M. A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng. 2005;33(2):179–90. https://doi.org/10.1007/s10439-005-8976-5.

    Article  CAS  PubMed  Google Scholar 

  57. Shah S, Liu Y, Hu W, Gao J. Modeling particle shape-dependent dynamics in nanomedicine. J Nanosci Nanotechnol. 2011;11(2):919–28. https://doi.org/10.1166/jnn.2011.3536.Modeling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38. https://doi.org/10.1016/j.addr.2016.04.025.

    Article  CAS  PubMed  Google Scholar 

  59. von Roemeling C, Jiang W, Chan CK, Weissman IL, Kim BYS. Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol. 2017;35(2):159–71. https://doi.org/10.1016/j.tibtech.2016.07.006.

    Article  CAS  Google Scholar 

  60. Patel NR, Pattni BS, Abouzeid AH, Torchilin VP. Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev. 2013;65(13–14):1748–62. https://doi.org/10.1016/j.addr.2013.08.004.

    Article  CAS  PubMed  Google Scholar 

  61. Li HJ, Du JZ, Liu J, Du XJ, Shen S, Zhu YH, Wang X, Ye X, Nie S, Wang J. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano. 2016;10(7):6753–61. https://doi.org/10.1021/acsnano.6b02326.

    Article  CAS  PubMed  Google Scholar 

  62. Binauld S, Stenzel MH. Acid-degradable polymers for drug delivery: a decade of innovation. Chem Commun. 2013;49(21):2082. https://doi.org/10.1039/c2cc36589h.

    Article  CAS  Google Scholar 

  63. Yin Q, Shen J, Zhang Z, Yu H, Li Y. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv Drug Deliv Rev. 2013;65(13–14):1699–715. https://doi.org/10.1016/j.addr.2013.04.011.

    Article  CAS  PubMed  Google Scholar 

  64. Fontana F, Liu D, Hirvonen J, Santos HA. Delivery of therapeutics with nanoparticles: what’s new in cancer immunotherapy? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(1). https://doi.org/10.1002/wnan.1421.

    Google Scholar 

  65. Hu CMJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83(8):1104–11. https://doi.org/10.1016/j.bcp.2012.01.008.

    Article  CAS  PubMed  Google Scholar 

  66. Iyer AK, Singh A, Ganta S, Amiji MM. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv Drug Deliv Rev. 2013;65:1784–802. https://doi.org/10.1016/j.addr.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  67. Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today. 2012;17(17–18):1044–52. https://doi.org/10.1016/j.drudis.2012.05.010.

    Article  CAS  PubMed  Google Scholar 

  68. Scarano W, de Souza P, Stenzel MH. Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer. Biomater Sci. 2015;3(1):163–74. https://doi.org/10.1039/C4BM00272E.

    Article  CAS  PubMed  Google Scholar 

  69. Sun R, Liu Y, Li SY, Shen S, Du XJ, Xu CF, Cao ZT, Bao Y, Zhu YH, Li YP, et al. Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials. 2015;37:405–14. https://doi.org/10.1016/j.biomaterials.2014.10.018.

    Article  CAS  PubMed  Google Scholar 

  70. Meng F, Wang J, Ping Q, Yeo Y. Camouflaging nanoparticles for ratiometric delivery of therapeutic combinations. Nano Lett. 2019;19(3):1479–87. https://doi.org/10.1021/acs.nanolett.8b04017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang J, Li J, Shi Z, Yang Y, Xie X, Lee SMY, Wang Y, Leong KW, Chen M. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater. 2017;58:349–64. https://doi.org/10.1016/j.actbio.2017.04.029.

    Article  CAS  PubMed  Google Scholar 

  72. Wang Z, Ho PC. A nanocapsular combinatorial sequential drug delivery system for antiangiogenesis and anticancer activities. Biomaterials. 2010;31(27):7115–23. https://doi.org/10.1016/j.biomaterials.2010.05.075.

    Article  CAS  PubMed  Google Scholar 

  73. Cai Y, Shen H, Zhan J, Lin M, Dai L, Ren C, Shi Y, Liu J, Gao J, Yang Z. Supramolecular “Trojan Horse” for nuclear delivery of dual anticancer drugs. J Am Chem Soc. 2017;139(8):2876–9. https://doi.org/10.1021/jacs.6b12322.

    Article  CAS  PubMed  Google Scholar 

  74. Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, Prise KM, Golding J, Mason NJ. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 2016;7(1):8. https://doi.org/10.1186/s12645-016-0021-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li N, Zhao P, Astruc D. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed. 2014;53(7):1756–89. https://doi.org/10.1002/anie.201300441.

    Article  CAS  Google Scholar 

  76. Elumalai R, Patil S, Maliyakkal N, Rangarajan A, Kondaiah P, Raichur AM. Protamine-carboxymethyl cellulose magnetic nanocapsules for enhanced delivery of anticancer drugs against drug resistant cancers. Nanomed Nanotechnol Biol Med. 2015;11(4):969–81. https://doi.org/10.1016/j.nano.2015.01.005.

    Article  CAS  Google Scholar 

  77. Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat. 2011;14(3):150–63. https://doi.org/10.1016/j.drup.2011.01.003.

    Article  CAS  PubMed  Google Scholar 

  78. Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008;34(7):592–602. https://doi.org/10.1016/j.ctrv.2008.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kemp JA, Shim MS, Heo CY, Kwon YJ. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev. 2016;98:3–18. https://doi.org/10.1016/j.addr.2015.10.019.

    Article  CAS  PubMed  Google Scholar 

  80. Xiong XB, Lavasanifar A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 SiRNA and doxorubicin. ACS Nano. 2011;5(6):5202–13. https://doi.org/10.1021/nn2013707.

    Article  CAS  PubMed  Google Scholar 

  81. Kunjachan S, Rychlik B, Storm G, Kiessling F, Lammers T. Multidrug resistance: physiological principles and nanomedical solutions. Adv Drug Deliv Rev. 2013;65(13–14):1852–65. https://doi.org/10.1016/j.addr.2013.09.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med. 2015;21(4):223–32. https://doi.org/10.1016/j.molmed.2015.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A. Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed Nanotechnol Biol Med. 2016;12(1):81–103. https://doi.org/10.1016/j.nano.2015.08.006.

    Article  CAS  Google Scholar 

  84. Havel H, Finch G, Strode P, Wolfgang M, Zale S, Bobe I, Youssoufian H, Peterson M, Liu M. Nanomedicines: from bench to bedside and beyond. AAPS J. 2016;18(6):1373–8. https://doi.org/10.1208/s12248-016-9961-7.

    Article  CAS  PubMed  Google Scholar 

  85. Sainz V, Conniot J, Matos AI, Peres C, Zupančič E, Moura L, Silva LC, Florindo HF, Gaspar RS. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun. 2015;468(3):504–10. https://doi.org/10.1016/j.bbrc.2015.08.023.

    Article  CAS  PubMed  Google Scholar 

  86. Ellis LM, Hicklin DJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin Cancer Res. 2009;15(24):7471–8. https://doi.org/10.1158/1078-0432.CCR-09-1070.

    Article  CAS  PubMed  Google Scholar 

  87. Linnekamp JF, Wang X, Medema JP, Vermeulen L. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. Cancer Res. 2015;75(2):245–9. https://doi.org/10.1158/0008-5472.CAN-14-2240.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecile Malardier-Jugroot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McTaggart, M., Malardier-Jugroot, C. (2019). Nanomedicine and Drug Delivery Systems in Overcoming Resistance to Targeted Therapy. In: Szewczuk, M., Qorri, B., Sambi, M. (eds) Current Applications for Overcoming Resistance to Targeted Therapies. Resistance to Targeted Anti-Cancer Therapeutics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-21477-7_10

Download citation

Publish with us

Policies and ethics