Skip to main content

Introduction to the Acquisition of Resistance to Targeted Therapy

  • Chapter
  • First Online:

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 20))

Abstract

The complex process of cancer development and tumorigenesis involves several critical events that take place concurrently or build upon each other, ultimately manifesting as a malignancy with therapeutically targetable components. Given the broad and unspecific cytotoxic effects of chemotherapy, supplementing conventional therapeutic options with targeted therapies initially showed promise in the clinic, particularly in cases where oncogenic addiction (i.e. the dependence on one pathway to maintain tumorigenesis) was a factor. A combination of one or more of these targeted therapeutic options has also shown promise. However, the underlying challenge of treating cancer is its uncanny ability to seamlessly adapt and resist the therapeutic effects of these targeted agents, rendering them ineffective. Other mechanisms can include relying on alternative pathways to sustain their growth. This introduction provides a comprehensive overview of the mechanisms of acquired resistance as they pertain to targeted therapies and indicate in which chapters specific topics will be addressed in more detail. Collectively, this book aims to provide current advancements in the therapeutic arms race between cancer and clinicians and scientists alike to overcome resistance to targeted therapies. We provide a comprehensive overview of the challenges and solutions to resistance to several conventional targeted therapies in addition to providing a discussion on broad topics including targeting components of the tumor microenvironment, emerging therapeutic options, and novel areas to be explored concerning nanotechnology and the epigenome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    MYC is a proto-oncogene that regulates cell proliferation and growth.

  2. 2.

    Bcl-2 is a family of proteins that regulate apoptosis.

  3. 3.

    MicroRNAs are transcribed by RNA polymerase II and are later processed by endonuclease reactions into miRNAs.

  4. 4.

    Mural cells include vascular smooth muscle cells and pericytes which provide stability to blood vessels. These cells are aberrantly organized in tumor blood vessels and lead to leaky and a disorganized network of blood vessels.

  5. 5.

    The Yamanaka factors are four critical stem cell transcription factors whose collective expression induces reprogramming of differentiated cells and produced induced pluripotent stem cells. These four factors are Oct-4, Sox-2, c-Myc and Klf-4 (OKSM).

  6. 6.

    VEGF include five glycoproteins called VEGFA (most well characterized and referred to as VEGF), VEGFB, VEFC, VEGFD and placenta growth factor. VEGF binds to receptor tyrosine kinases VEGFR1, VEGFR2, VEGFR3 leading to downstream signaling that regulates angiogenesis.

Abbreviations

ABC:

ATP-binding cassette

AKT:

Protein kinase B

BCL-2:

B-cell lymphoma-2

BCR-ABL:

Breakpoint cluster region protein—Abelson murine leukemia viral oncogene homolog 1

Bv-8:

Bombina variegate peptide 8

CAF:

Cancer-associated fibroblasts

c-FLIP:

cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein

CpG:

Cytosine and guanine-rich sequences

CSC :

Cancer stem cell

DNMT:

DNA methyltransferase

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-to-mesenchymal transition

ERK:

Extracellular signal-regulated kinase

FGF:

Fibroblast growth factor

HAT:

Histone acetyltransferase

HER:

Human epidermal growth factor receptor

HIF-1 α:

Hypoxia-inducible factor-1α

JAK:

Janus kinase

Klf-4:

Kruppel Like Factor 4

mAb:

Monoclonal antibody

MAPK:

Mitogen-activated protein kinase

MDR1:

Multidrug resistance protein 1

MEK:

Mitogen activated protein kinase kinase

MET:

Mesenchymal-to-epithelial transition

miRNA:

Micro-RNA

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NP1:

Neuropilin

NSCLC:

Non-small cell lung cancer

OCT-1:

Organic-cation transporter-1

Oct-4:

Octamer-binding transcription factor 4

OP:

Oseltamivir phosphate

PARP:

Poly ADP-ribose polymerase

PDGF:

Platelet-derived growth factor

PI3K:

Phosphoinositide 3-kinase

PIGF:

Placental growth factor

RTKs:

Receptor tyrosine kinases

STAT3:

Signal transducer and activator of transcription 3

TAM:

Tumor-associated macrophage

TGF-α:

Transforming growth factor alpha

TKI:

Tyrosine kinase inhibitors

TME:

Tumor microenvironment

VEGF:

Vascular endothelial growth factor

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  2. Groenendijk FH, Bernards R. Drug resistance to targeted therapies: deja vu all over again. Mol Oncol. 2014;8(6):1067–83. https://doi.org/10.1016/j.molonc.2014.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lackner MR, Wilson TR, Settleman J. Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol. 2012;8(8):999–1014. https://doi.org/10.2217/fon.12.86.

    Article  CAS  PubMed  Google Scholar 

  4. Redmond KL, Papafili A, Lawler M, Van Schaeybroeck S. Overcoming resistance to targeted therapies in cancer. Semin Oncol. 2015;42(6):896–908. https://doi.org/10.1053/j.seminoncol.2015.09.028.

    Article  CAS  PubMed  Google Scholar 

  5. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–26. https://doi.org/10.1038/nrc3599.

    Article  CAS  PubMed  Google Scholar 

  6. Neel DS, Bivona TG. Resistance is futile: overcoming resistance to targeted therapies in lung adenocarcinoma. NPJ Precis Oncol. 2017;1:3. https://doi.org/10.1038/s41698-017-0007-0.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mohd Sharial MS, Crown J, Hennessy BT. Overcoming resistance and restoring sensitivity to HER2-targeted therapies in breast cancer. Ann Oncol. 2012;23(12):3007–16. https://doi.org/10.1093/annonc/mds200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Migliore C, Giordano S. Resistance to targeted therapies: a role for microRNAs? Trends Mol Med. 2013;19(10):633–42. https://doi.org/10.1016/j.molmed.2013.08.002.

    Article  CAS  PubMed  Google Scholar 

  9. Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, Engelman JA. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci Signal. 2010;3(149):ra84. https://doi.org/10.1126/scisignal.2001148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang BD, Lee NH. Aberrant RNA splicing in cancer and drug resistance. Cancers (Basel). 2018;10(11). https://doi.org/10.3390/cancers10110458.

    Article  PubMed Central  Google Scholar 

  11. Solier S, Logette E, Desoche L, Solary E, Corcos L. Nonsense-mediated mRNA decay among human caspases: the caspase-2S putative protein is encoded by an extremely short-lived mRNA. Cell Death Differ. 2005;12(6):687–9. https://doi.org/10.1038/sj.cdd.4401594.

    Article  CAS  PubMed  Google Scholar 

  12. Erler JT, Cawthorne CJ, Williams KJ, Koritzinsky M, Wouters BG, Wilson C, et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol. 2004;24(7):2875–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chandarlapaty S. Negative feedback and adaptive resistance to the targeted therapy of cancer. Cancer Discov. 2012;2(4):311–9. https://doi.org/10.1158/2159-8290.CD-12-0018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. von Manstein V, Yang CM, Richter D, Delis N, Vafaizadeh V, Groner B. Resistance of cancer cells to targeted therapies through the activation of compensating signaling loops. Curr Signal Transduct Ther. 2013;8(3):193–202. https://doi.org/10.2174/1574362409666140206221931.

    Article  CAS  Google Scholar 

  15. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 2013;3(5):520–33. https://doi.org/10.1158/2159-8290.CD-12-0531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature. 2008;453(7194):544–7. https://doi.org/10.1038/nature06965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cedar H, Bergman Y. Epigenetics of haematopoietic cell development. Nat Rev Immunol. 2011;11(7):478–88. https://doi.org/10.1038/nri2991.

    Article  CAS  PubMed  Google Scholar 

  18. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7. https://doi.org/10.1038/nature09165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Smet C, Lurquin C, Lethe B, Martelange V, Boon T. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol. 1999;19(11):7327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cohen I, Poreba E, Kamieniarz K, Schneider R. Histone modifiers in cancer: friends or foes? Genes Cancer. 2011;2(6):631–47. https://doi.org/10.1177/1947601911417176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilting RH, Dannenberg JH. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat. 2012;15(1–2):21–38. https://doi.org/10.1016/j.drup.2012.01.008.

    Article  CAS  PubMed  Google Scholar 

  22. Kosuri KV, Wu X, Wang L, Villalona-Calero MA, Otterson GA. An epigenetic mechanism for capecitabine resistance in mesothelioma. Biochem Biophys Res Commun. 2010;391(3):1465–70. https://doi.org/10.1016/j.bbrc.2009.12.095.

    Article  CAS  PubMed  Google Scholar 

  23. Zheng T, Wang J, Chen X, Liu L. Role of microRNA in anticancer drug resistance. Int J Cancer. 2010;126(1):2–10. https://doi.org/10.1002/ijc.24782.

    Article  CAS  PubMed  Google Scholar 

  24. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A. 2006;103(8):2746–51. https://doi.org/10.1073/pnas.0511045103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang ZX, Lu BB, Wang H, Cheng ZX, Yin YM. MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res. 2011;42(4):281–90. https://doi.org/10.1016/j.arcmed.2011.06.008.

    Article  CAS  PubMed  Google Scholar 

  26. Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 2019;11(1):25. https://doi.org/10.1186/s13148-018-0587-8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Giovannetti E, Erozenci A, Smit J, Danesi R, Peters GJ. Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit Rev Oncol Hematol. 2012;81(2):103–22. https://doi.org/10.1016/j.critrevonc.2011.03.010.

    Article  PubMed  Google Scholar 

  28. Eto K, Iwatsuki M, Watanabe M, Ida S, Ishimoto T, Iwagami S, et al. The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann Surg Oncol. 2014;21(1):343–50. https://doi.org/10.1245/s10434-013-3325-7.

    Article  PubMed  Google Scholar 

  29. Wang YS, Wang YH, Xia HP, Zhou SW, Schmid-Bindert G, Zhou CC. MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac J Cancer Prev. 2012;13(1):255–60.

    Article  PubMed  Google Scholar 

  30. Le Magnen C, Shen MM, Abate-Shen C. Lineage plasticity in cancer progression and treatment. Annu Rev Cancer Biol. 2018;2:271–89. https://doi.org/10.1146/annurev-cancerbio-030617-050224.

    Article  PubMed  Google Scholar 

  31. Huang Z, Wu T, Liu AY, Ouyang G. Differentiation and transdifferentiation potentials of cancer stem cells. Oncotarget. 2015;6(37):39550–63. https://doi.org/10.18632/oncotarget.6098.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611–29. https://doi.org/10.1038/nrclinonc.2017.44.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sui H, Zhu L, Deng W, Li Q. Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat. 2014;37(10):584–9. https://doi.org/10.1159/000367802.

    Article  CAS  PubMed  Google Scholar 

  34. Du B, Shim JS. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21(7). https://doi.org/10.3390/molecules21070965.

    Article  PubMed Central  Google Scholar 

  35. Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel). 1995;154(1):8–20.

    Article  CAS  Google Scholar 

  36. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96. https://doi.org/10.1038/nrm3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaimori A, Potter J, Kaimori JY, Wang C, Mezey E, Koteish A. Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem. 2007;282(30):22089–101. https://doi.org/10.1074/jbc.M700998200.

    Article  CAS  PubMed  Google Scholar 

  38. Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci. 2005;118(Pt 16):3573–84. https://doi.org/10.1242/jcs.02554.

    Article  CAS  PubMed  Google Scholar 

  39. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18(1):99–115. https://doi.org/10.1101/gad.276304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim HJ, Litzenburger BC, Cui X, Delgado DA, Grabiner BC, Lin X, et al. Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol. 2007;27(8):3165–75. https://doi.org/10.1128/MCB.01315-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15. https://doi.org/10.1016/j.cell.2008.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaffer CL, San Juan BP, Lim E, Weinberg RA. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016;35(4):645–54. https://doi.org/10.1007/s10555-016-9648-7.

    Article  PubMed  Google Scholar 

  43. Park CC, Bissell MJ, Barcellos-Hoff MH. The influence of the microenvironment on the malignant phenotype. Mol Med Today. 2000;6(8):324–9.

    Article  CAS  PubMed  Google Scholar 

  44. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farrow B, Albo D, Berger DH. The role of the tumor microenvironment in the progression of pancreatic cancer. J Surg Res. 2008;149(2):319–28. https://doi.org/10.1016/j.jss.2007.12.757.

    Article  PubMed  Google Scholar 

  46. Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res. 2007;74(2–3):72–84. https://doi.org/10.1016/j.mvr.2007.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang G, Chen L. Tumor vasculature and microenvironment normalization: a possible mechanism of antiangiogenesis therapy. Cancer Biother Radiopharm. 2008;23(5):661–7. https://doi.org/10.1089/cbr.2008.0492.

    Article  CAS  PubMed  Google Scholar 

  48. Bottaro DP, Cancer LLA. Out of air is not out of action. Nature. 2003;423(6940):593–5. https://doi.org/10.1038/423593a.

    Article  CAS  PubMed  Google Scholar 

  49. Stratman AN, Pezoa SA, Farrelly OM, Castranova D, Dye LE III, Butler MG, et al. Interactions between mural cells and endothelial cells stabilize the developing zebrafish dorsal aorta. Development. 2017;144(1):115–27. https://doi.org/10.1242/dev.143131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Karamysheva AF. Mechanisms of angiogenesis. Biochemistry (Mosc). 2008;73(7):751–62.

    Article  CAS  Google Scholar 

  51. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L. Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Asp Med. 2011;32(2):88–111. https://doi.org/10.1016/j.mam.2011.04.004.

    Article  CAS  Google Scholar 

  53. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8(20):3274–84. https://doi.org/10.4161/cc.8.20.9701.

    Article  CAS  PubMed  Google Scholar 

  54. Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN. Hypoxia inducible factors in cancer stem cells. Br J Cancer. 2010;102(5):789–95. https://doi.org/10.1038/sj.bjc.6605551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schoning JP, Monteiro M, Gu W. Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors HIF1alpha and HIF2alpha. Clin Exp Pharmacol Physiol. 2017;44(2):153–61. https://doi.org/10.1111/1440-1681.12693.

    Article  CAS  PubMed  Google Scholar 

  56. Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci U S A. 2009;106(11):4260–5. https://doi.org/10.1073/pnas.0810067106.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhou J, Chen Q, Zou Y, Zheng S, Chen Y. Stem cells and cellular origins of mammary gland: updates in rationale, controversies, and cancer relevance. Stem Cells Int. 2019;2019:4247168. https://doi.org/10.1155/2019/4247168.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zheng S, Xin L, Liang A, Fu Y. Cancer stem cell hypothesis: a brief summary and two proposals. Cytotechnology. 2013;65(4):505–12. https://doi.org/10.1007/s10616-012-9517-3.

    Article  CAS  PubMed  Google Scholar 

  59. Allegra A, Alonci A, Penna G, Innao V, Gerace D, Rotondo F, et al. The cancer stem cell hypothesis: a guide to potential molecular targets. Cancer Investig. 2014;32(9):470–95. https://doi.org/10.3109/07357907.2014.958231.

    Article  Google Scholar 

  60. Turdo A, Veschi V, Gaggianesi M, Chinnici A, Bianca P, Todaro M, et al. Meeting the challenge of targeting cancer stem cells. Front Cell Dev Biol. 2019;7:16. https://doi.org/10.3389/fcell.2019.00016.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhao Y, Dong Q, Li J, Zhang K, Qin J, Zhao J, et al. Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Semin Cancer Biol. 2018;53:139–55. https://doi.org/10.1016/j.semcancer.2018.08.002.

    Article  CAS  PubMed  Google Scholar 

  62. Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D, Fisher PB. Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting. Adv Cancer Res. 2019;141:43–84. https://doi.org/10.1016/bs.acr.2018.12.002.

    Article  PubMed  Google Scholar 

  63. Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J. 2008;22(10):3696–705. https://doi.org/10.1096/fj.08-102590.

    Article  CAS  PubMed  Google Scholar 

  64. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22. https://doi.org/10.1016/j.ccr.2012.02.022.

    Article  CAS  PubMed  Google Scholar 

  65. Vaquero J, Lobe C, Tahraoui S, Claperon A, Mergey M, Merabtene F, et al. The IGF2/IR/IGF1R pathway in tumor cells and myofibroblasts mediates resistance to EGFR inhibition in cholangiocarcinoma. Clin Cancer Res. 2018;24(17):4282–96. https://doi.org/10.1158/1078-0432.CCR-17-3725.

    Article  CAS  PubMed  Google Scholar 

  66. Almeida FV, Douglass SM, Fane ME, Weeraratna AT. Bad company: Microenvironmentally mediated resistance to targeted therapy in melanoma. Pigment Cell Melanoma Res. 2019;32(2):237–47. https://doi.org/10.1111/pcmr.12736.

    Article  PubMed  Google Scholar 

  67. Hirata E, Girotti MR, Viros A, Hooper S, Spencer-Dene B, Matsuda M, et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell. 2015;27(4):574–88. https://doi.org/10.1016/j.ccell.2015.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Castro BA, Flanigan P, Jahangiri A, Hoffman D, Chen W, Kuang R, et al. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy. Oncogene. 2017;36(26):3749–59. https://doi.org/10.1038/onc.2017.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Safarzadeh E, Orangi M, Mohammadi H, Babaie F, Baradaran B. Myeloid-derived suppressor cells: Important contributors to tumor progression and metastasis. J Cell Physiol. 2018;233(4):3024–36. https://doi.org/10.1002/jcp.26075.

    Article  CAS  PubMed  Google Scholar 

  70. Finke J, Ko J, Rini B, Rayman P, Ireland J, Cohen P. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol. 2011;11(7):856–61. https://doi.org/10.1016/j.intimp.2011.01.030.

    Article  CAS  PubMed  Google Scholar 

  71. Rivera LB, Meyronet D, Hervieu V, Frederick MJ, Bergsland E, Bergers G. Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep. 2015;11(4):577–91. https://doi.org/10.1016/j.celrep.2015.03.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yousafzai NA, Wang H, Wang Z, Zhu Y, Zhu L, Jin H, et al. Exosome mediated multidrug resistance in cancer. Am J Cancer Res. 2018;8(11):2210–26.

    PubMed  PubMed Central  Google Scholar 

  73. Corcoran C, Rani S, O'Brien K, O’Neill A, Prencipe M, Sheikh R, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 2012;7(12):e50999. https://doi.org/10.1371/journal.pone.0050999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dean M. ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia. 2009;14(1):3–9. https://doi.org/10.1007/s10911-009-9109-9.

    Article  PubMed  Google Scholar 

  75. Shukla S, Chen ZS, Ambudkar SV. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Updat. 2012;15(1–2):70–80. https://doi.org/10.1016/j.drup.2012.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. https://doi.org/10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  77. Ischenko I, Zhi J, Moll UM, Nemajerova A, Petrenko O. Direct reprogramming by oncogenic Ras and Myc. Proc Natl Acad Sci U S A. 2013;110(10):3937–42. https://doi.org/10.1073/pnas.1219592110.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3(5):391–400. https://doi.org/10.1038/nrd1381.

    Article  CAS  PubMed  Google Scholar 

  79. Berretta M, Lleshi A, Zanet E, Bearz A, Simonelli C, Fisichella R, et al. Bevacizumab plus irinotecan-, fluorouracil-, and leucovorin-based chemotherapy with concomitant HAART in an HIV-positive patient with metastatic colorectal cancer. Onkologie. 2008;31(7):394–7. https://doi.org/10.1159/000132360.

    Article  CAS  PubMed  Google Scholar 

  80. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50. https://doi.org/10.1056/NEJMoa061884.

    Article  CAS  PubMed  Google Scholar 

  81. Jain RK. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park). 2005;19(4 Suppl 3):7–16.

    Google Scholar 

  82. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8(8):579–91. https://doi.org/10.1038/nrc2403.

    Article  CAS  PubMed  Google Scholar 

  83. Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM, et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res. 2006;12(24):7271–8. https://doi.org/10.1158/1078-0432.CCR-06-1249.

    Article  CAS  PubMed  Google Scholar 

  84. Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007;13(5):1367–73. https://doi.org/10.1158/1078-0432.CCR-06-2328.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang J, Gold KA, Kim E. Sorafenib in non-small cell lung cancer. Expert Opin Investig Drugs. 2012;21(9):1417–26. https://doi.org/10.1517/13543784.2012.699039.

    Article  CAS  PubMed  Google Scholar 

  86. Klagsbrun M, Takashima S, Mamluk R. The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol. 2002;515:33–48.

    Article  CAS  PubMed  Google Scholar 

  87. Halder JB, Zhao X, Soker S, Paria BC, Klagsbrun M, Das SK, et al. Differential expression of VEGF isoforms and VEGF (164)-specific receptor neuropilin-1 in the mouse uterus suggests a role for VEGF (164) in vascular permeability and angiogenesis during implantation. Genesis. 2000;26(3):213–24.

    Article  CAS  PubMed  Google Scholar 

  88. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83–95. https://doi.org/10.1016/j.ccr.2006.11.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bae DG, Kim TD, Li G, Yoon WH, Chae CB. Anti-flt1 peptide, a vascular endothelial growth factor receptor 1-specific hexapeptide, inhibits tumor growth and metastasis. Clin Cancer Res. 2005;11(7):2651–61. https://doi.org/10.1158/1078-0432.CCR-04-1564.

    Article  CAS  PubMed  Google Scholar 

  90. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603. https://doi.org/10.1038/nrc2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ellis LM, Hicklin DJ. Resistance to targeted therapies: refining anticancer therapy in the era of molecular oncology. Clin Cancer Res. 2009;15(24):7471–8. https://doi.org/10.1158/1078-0432.CCR-09-1070.

    Article  CAS  PubMed  Google Scholar 

  92. Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem. 1994;269(41):25646–54.

    CAS  PubMed  Google Scholar 

  93. Kopetz S, Hoff PM, Morris JS, Wolff RA, Eng C, Glover KY, et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol. 2010;28(3):453–9. https://doi.org/10.1200/JCO.2009.24.8252.

    Article  CAS  PubMed  Google Scholar 

  94. Sfiligoi C, de Luca A, Cascone I, Sorbello V, Fuso L, Ponzone R, et al. Angiopoietin-2 expression in breast cancer correlates with lymph node invasion and short survival. Int J Cancer. 2003;103(4):466–74. https://doi.org/10.1002/ijc.10851.

    Article  CAS  PubMed  Google Scholar 

  95. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007;450(7171):825–31. https://doi.org/10.1038/nature06348.

    Article  CAS  PubMed  Google Scholar 

  96. Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell. 2009;15(1):21–34. https://doi.org/10.1016/j.ccr.2008.12.004.

    Article  CAS  PubMed  Google Scholar 

  97. Itatani Y, Kawada K, Yamamoto T, Sakai Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. Int J Mol Sci. 2018;19(4). https://doi.org/10.3390/ijms19041232.

    Article  PubMed Central  Google Scholar 

  98. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155(3):739–52. https://doi.org/10.1016/S0002-9440(10)65173-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wagenblast E, Soto M, Gutierrez-Angel S, Hartl CA, Gable AL, Maceli AR, et al. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature. 2015;520(7547):358–62. https://doi.org/10.1038/nature14403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Williamson SC, Metcalf RL, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322. https://doi.org/10.1038/ncomms13322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ge H, Luo H. Overview of advances in vasculogenic mimicry—a potential target for tumor therapy. Cancer Manag Res. 2018;10:2429–37. https://doi.org/10.2147/CMAR.S164675.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Shen R, Ye Y, Chen L, Yan Q, Barsky SH, Gao JX. Precancerous stem cells can serve as tumor vasculogenic progenitors. PLoS One. 2008;3(2):e1652. https://doi.org/10.1371/journal.pone.0001652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu Q, Qiao L, Liang N, Xie J, Zhang J, Deng G, et al. The relationship between vasculogenic mimicry and epithelial-mesenchymal transitions. J Cell Mol Med. 2016;20(9):1761–9. https://doi.org/10.1111/jcmm.12851.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Liu TJ, Sun BC, Zhao XL, Zhao XM, Sun T, Gu Q, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 2013;32(5):544–53. https://doi.org/10.1038/onc.2012.85.

    Article  CAS  PubMed  Google Scholar 

  105. Wu S, Yu L, Wang D, Zhou L, Cheng Z, Chai D, et al. Aberrant expression of CD133 in non-small cell lung cancer and its relationship to vasculogenic mimicry. BMC Cancer. 2012;12:535. https://doi.org/10.1186/1471-2407-12-535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015;4(1):1–12. https://doi.org/10.1016/j.jbo.2015.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer. 2010;9:75. https://doi.org/10.1186/1476-4598-9-75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Worthylake R, Opresko LK, Wiley HS. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem. 1999;274(13):8865–74.

    Article  CAS  PubMed  Google Scholar 

  109. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39. https://doi.org/10.1038/nrc2559.

    Article  CAS  PubMed  Google Scholar 

  110. Mondal J, Tiwary P, Berne BJ. How a kinase inhibitor withstands gatekeeper residue mutations. J Am Chem Soc. 2016;138(13):4608–15. https://doi.org/10.1021/jacs.6b01232.

    Article  CAS  PubMed  Google Scholar 

  111. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008;105(6):2070–5. https://doi.org/10.1073/pnas.0709662105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43. https://doi.org/10.1126/science.1141478.

    Article  CAS  PubMed  Google Scholar 

  113. Rimawi MF, De Angelis C, Schiff R. Resistance to anti-HER2 therapies in breast cancer. Am Soc Clin Oncol Educ Book. 2015;2015:e157–64. https://doi.org/10.14694/EdBook_AM.2015.35.e157.

    Article  Google Scholar 

  114. Tsui DWY, Murtaza M, Wong ASC, Rueda OM, Smith CG, Chandrananda D, et al. Dynamics of multiple resistance mechanisms in plasma DNA during EGFR-targeted therapies in non-small cell lung cancer. EMBO Mol Med. 2018;10(6). https://doi.org/10.15252/emmm.201707945.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Gilmour AM, Abdulkhalek S, Cheng TS, Alghamdi F, Jayanth P, O’Shea LK, et al. A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer. Cell Signal. 2013;25(12):2587–603. https://doi.org/10.1016/j.cellsig.2013.08.008.

    Article  CAS  PubMed  Google Scholar 

  116. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12(18):5268–72. https://doi.org/10.1158/1078-0432.CCR-05-1554.

    Article  CAS  PubMed  Google Scholar 

  117. Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;28(Suppl 1):S24–31. https://doi.org/10.1038/onc.2009.198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ono M, Kuwano M. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res. 2006;12(24):7242–51. https://doi.org/10.1158/1078-0432.CCR-06-0646.

    Article  CAS  PubMed  Google Scholar 

  119. Raymond E, Faivre S, Armand JP. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs. 2000;60(Suppl 1):15–23 . discussion 41-2. https://doi.org/10.2165/00003495-200060001-00002.

    Article  CAS  PubMed  Google Scholar 

  120. Guren TK, Thomsen M, Kure EH, Sorbye H, Glimelius B, Pfeiffer P, et al. Cetuximab in treatment of metastatic colorectal cancer: final survival analyses and extended RAS data from the NORDIC-VII study. Br J Cancer. 2017;116(10):1271–8. https://doi.org/10.1038/bjc.2017.93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Specenier P, Vermorken JB. Cetuximab: its unique place in head and neck cancer treatment. Biologics. 2013;7:77–90. https://doi.org/10.2147/BTT.S43628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hammerman PS, Janne PA, Johnson BE. Resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res. 2009;15(24):7502–9. https://doi.org/10.1158/1078-0432.CCR-09-0189.

    Article  CAS  PubMed  Google Scholar 

  123. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39. https://doi.org/10.1056/NEJMoa040938.

    Article  CAS  PubMed  Google Scholar 

  124. Bokemeyer C, Van Cutsem E, Rougier P, Ciardiello F, Heeger S, Schlichting M, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer. 2012;48(10):1466–75. https://doi.org/10.1016/j.ejca.2012.02.057.

    Article  CAS  PubMed  Google Scholar 

  125. Bell DW, Gore I, Okimoto RA, Godin-Heymann N, Sordella R, Mulloy R, et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet. 2005;37(12):1315–6. https://doi.org/10.1038/ng1671.

    Article  CAS  PubMed  Google Scholar 

  126. Jones HE, Goddard L, Gee JM, Hiscox S, Rubini M, Barrow D, et al. Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer. 2004;11(4):793–814. https://doi.org/10.1677/erc.1.00799.

    Article  CAS  PubMed  Google Scholar 

  127. Salesse S, Verfaillie CM. BCR/ABL: from molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia. Oncogene. 2002;21(56):8547–59. https://doi.org/10.1038/sj.onc.1206082.

    Article  CAS  PubMed  Google Scholar 

  128. Patel AB, O’Hare T, Deininger MW. Mechanisms of resistance to ABL kinase inhibition in chronic myeloid leukemia and the development of next generation ABL kinase inhibitors. Hematol Oncol Clin North Am. 2017;31(4):589–612. https://doi.org/10.1016/j.hoc.2017.04.007.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Itonaga H, Tsushima H, Imanishi D, Hata T, Doi Y, Mori S, et al. Molecular analysis of the BCR-ABL1 kinase domain in chronic-phase chronic myelogenous leukemia treated with tyrosine kinase inhibitors in practice: study by the Nagasaki CML Study Group. Leuk Res. 2014;38(1):76–83. https://doi.org/10.1016/j.leukres.2013.10.022.

    Article  CAS  PubMed  Google Scholar 

  130. Bewry NN, Nair RR, Emmons MF, Boulware D, Pinilla-Ibarz J, Hazlehurst LA. Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther. 2008;7(10):3169–75. https://doi.org/10.1158/1535-7163.MCT-08-0314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S, et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia. 2005;19(10):1774–82. https://doi.org/10.1038/sj.leu.2403898.

    Article  CAS  PubMed  Google Scholar 

  132. Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A, et al. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res. 2005;65(19):8912–9. https://doi.org/10.1158/0008-5472.CAN-05-0076.

    Article  CAS  PubMed  Google Scholar 

  133. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99(1):319–25.

    Article  CAS  PubMed  Google Scholar 

  134. White DL, Dang P, Engler J, Frede A, Zrim S, Osborn M, et al. Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. J Clin Oncol. 2010;28(16):2761–7. https://doi.org/10.1200/JCO.2009.26.5819.

    Article  CAS  PubMed  Google Scholar 

  135. White DL, Saunders VA, Dang P, Engler J, Hughes TP. OCT-1 activity measurement provides a superior imatinib response predictor than screening for single-nucleotide polymorphisms of OCT-1. Leukemia. 2010;24(11):1962–5. https://doi.org/10.1038/leu.2010.188.

    Article  CAS  PubMed  Google Scholar 

  136. Haxho F, Allison S, Alghamdi F, Brodhagen L, Kuta VE, Abdulkhalek S, et al. Oseltamivir phosphate monotherapy ablates tumor neovascularization, growth, and metastasis in mouse model of human triple-negative breast adenocarcinoma. Breast Cancer. 2014;6:191–203. https://doi.org/10.2147/BCTT.S74663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. O'Shea LK, Abdulkhalek S, Allison S, Neufeld RJ, Szewczuk MR. Therapeutic targeting of Neu1 sialidase with oseltamivir phosphate (Tamiflu(R)) disables cancer cell survival in human pancreatic cancer with acquired chemoresistance. OncoTargets and therapy. 2014;7:117–34. https://doi.org/10.2147/OTT.S55344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Abdulkhalek S, Geen OD, Brodhagen L, Haxho F, Alghamdi F, Allison S, et al. Transcriptional factor snail controls tumor neovascularization, growth and metastasis in mouse model of human ovarian carcinoma. Clin Transl Med. 2014;3(1):28. https://doi.org/10.1186/s40169-014-0028-z.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Wood K, Szewczuk MR, Rousseau D, Neufeld RJ. Oseltamivir phosphate released from injectable Pickering emulsions over an extended term disables human pancreatic cancer cell survival. Oncotarget. 2018;9(16):12754–68. https://doi.org/10.18632/oncotarget.24339.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hrynyk M, Ellis JP, Haxho F, Allison S, Steele JA, Abdulkhalek S, et al. Therapeutic designed poly (lactic-co-glycolic acid) cylindrical oseltamivir phosphate-loaded implants impede tumor neovascularization, growth and metastasis in mouse model of human pancreatic carcinoma. Drug Des Devel Ther. 2015;9:4573–86. https://doi.org/10.2147/DDDT.S90170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Allison Logan S, Brissenden AJ, Szewczuk MR, Neufeld RJ. Combinatorial and sequential delivery of gemcitabine and oseltamivir phosphate from implantable poly(d,l-lactic-co-glycolic acid) cylinders disables human pancreatic cancer cell survival. Drug Des Devel Ther. 2017;11:2239–50. https://doi.org/10.2147/DDDT.S137934.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Haq S, Samuel V, Haxho F, Akasov R, Leko M, Burov SV, et al. Sialylation facilitates self-assembly of 3D multicellular prostaspheres by using cyclo-RGDfK(TPP) peptide. OncoTargets and therapy. 2017;10:2427–47. https://doi.org/10.2147/OTT.S133563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Akasov R, Haq S, Haxho F, Samuel V, Burov SV, Markvicheva E, et al. Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly. Oncotarget. 2016;7(40):66119–34. https://doi.org/10.18632/oncotarget.11868.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sambi M, Haq S, Samuel V, Qorri B, Haxho F, Hill K, et al. Alternative therapies for metastatic breast cancer: multimodal approach targeting tumor cell heterogeneity. Breast Cancer. 2017;9:85–93. https://doi.org/10.2147/BCTT.S130838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Adams JM, Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol. 2007;19(5):488–96. https://doi.org/10.1016/j.coi.2007.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(2). https://doi.org/10.1101/cshperspect.a008722.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Reed JC. Bcl-2: prevention of apoptosis as a mechanism of drug resistance. Hematol Oncol Clin North Am. 1995;9(2):451–73.

    Article  CAS  PubMed  Google Scholar 

  148. Reed JC, Miyashita T, Takayama S, Wang HG, Sato T, Krajewski S, et al. BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem. 1996;60(1):23–32. https://doi.org/10.1002/(SICI)1097-4644(19960101)60:1%3C23::AID-JCB5%3E3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  149. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S, et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006;10(5):375–88. https://doi.org/10.1016/j.ccr.2006.10.006.

    Article  CAS  PubMed  Google Scholar 

  150. Hervouet E, Cheray M, Vallette FM, Cartron PF. DNA methylation and apoptosis resistance in cancer cells. Cell. 2013;2(3):545–73. https://doi.org/10.3390/cells2030545.

    Article  CAS  Google Scholar 

  151. Fahrenkrog B. Histone modifications as regulators of life and death in Saccharomyces cerevisiae. Microb Cell. 2015;3(1):1–13. https://doi.org/10.15698/mic2016.01.472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myron R. Szewczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sambi, M., Szewczuk, M.R. (2019). Introduction to the Acquisition of Resistance to Targeted Therapy. In: Szewczuk, M., Qorri, B., Sambi, M. (eds) Current Applications for Overcoming Resistance to Targeted Therapies. Resistance to Targeted Anti-Cancer Therapeutics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-21477-7_1

Download citation

Publish with us

Policies and ethics