Skip to main content

Joining Implications in Formal Contexts and Inductive Learning in a Horn Description Logic

  • Conference paper
  • First Online:
  • 438 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11511))

Abstract

A joining implication is a restricted form of an implication where it is explicitly specified which attributes may occur in the premise and in the conclusion, respectively. A technique for sound and complete axiomatization of joining implications valid in a given formal context is provided. In particular, a canonical base for the joining implications valid in a given formal context is proposed, which enjoys the property of being of minimal cardinality among all such bases. Background knowledge in form of a set of valid joining implications can be incorporated. Furthermore, an application to inductive learning in a Horn description logic is proposed, that is, a procedure for sound and complete axiomatization of \({\mathsf {Horn\text {-}}}\mathcal {M} \) concept inclusions from a given interpretation is developed. A complexity analysis shows that this procedure runs in deterministic exponential time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We have not introduced the notion of a concept lattice here, since it is not needed for our purposes; the interested reader is rather referred to [10].

  2. 2.

    The result has not been obtained by hand, but instead the implementation of the algorithm NextClosures [17] in ConceptExplorer FX [16] has been utilized. Thus, no intermediate computation steps are provided.

  3. 3.

    Formally, the role depth is recursively defined as follows: , and , and , and .

References

  1. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30–August 5 2005, pp. 364–369. Professional Book Center (2005)

    Google Scholar 

  2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, New York (2017)

    Book  Google Scholar 

  3. Belohlávek, R., Vychodil, V.: Closure-based constraints in formal concept analysis. Discrete Appl. Math. 161(13–14), 1894–1911 (2013)

    Article  MathSciNet  Google Scholar 

  4. Borchmann, D.: Learning terminological knowledge with high confidence from erroneous data. Doctoral thesis, Technische Universität Dresden, Dresden, Germany (2014)

    Google Scholar 

  5. Borchmann, D., Distel, F., Kriegel, F.: Axiomatisation of general concept inclusions from finite interpretations. J. Appl. Non-Class. Logics 26(1), 1–46 (2016)

    Article  MathSciNet  Google Scholar 

  6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings, Tenth International Conference on Principles of Knowledge Representation and Reasoning, Lake District of the United Kingdom, 2–5 June 2006, pp. 260–270. AAAI Press (2006)

    Google Scholar 

  7. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

    Article  Google Scholar 

  8. De Giacomo, G., Lenzerini, M.: A uniform framework for concept definitions in description logics. J. Artif. Intell. Res. 6, 87–110 (1997)

    Article  MathSciNet  Google Scholar 

  9. Distel, F.: Learning description logic knowledge bases from data using methods from formal concept analysis. Doctoral thesis, Technische Universität Dresden, Dresden, Germany (2011)

    Google Scholar 

  10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  11. Guigues, J.L., Duquenne, V.: Famille minimale d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines 95, 5–18 (1986)

    Google Scholar 

  12. Hernich, A., Lutz, C., Papacchini, F., Wolter, F.: Horn-Rewritability vs. PTime query evaluation in ontology-mediated querying. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018, pp. 1861–1867. ijcai.org (2018)

    Google Scholar 

  13. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman and Hall/CRC Press, Boca Raton (2010)

    Google Scholar 

  14. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive description logics. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5 2005, pp. 466–471. Professional Book Center (2005)

    Google Scholar 

  15. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction to disjunctive datalog. J. Autom. Reason. 39(3), 351–384 (2007)

    Article  MathSciNet  Google Scholar 

  16. Kriegel, F.: Concept Explorer FX (2010–2019), Software for Formal Concept Analysis with Description Logic Extensions. https://github.com/francesco-kriegel/conexp-fx

  17. Kriegel, F.: NextClosures with constraints. In: Huchard, M., Kuznetsov, S. (eds.) Proceedings of the Thirteenth International Conference on Concept Lattices and Their Applications, Moscow, Russia, 18–22 July 2016. CEUR Workshop Proceedings, vol. 1624, pp. 231–243. CEUR-WS.org (2016)

    Google Scholar 

  18. Kriegel, F.: Acquisition of terminological knowledge from social networks in description logic. In: Missaoui, R., Kuznetsov, S.O., Obiedkov, S. (eds.) Formal Concept Analysis of Social Networks. LNSN, pp. 97–142. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64167-6_5

    Chapter  Google Scholar 

  19. Kriegel, F.: Most specific consequences in the description logic \(\cal{EL}\). LTCS-Report 18–11, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2018, accepted for publication in Discrete Applied Mathematics). https://tu-dresden.de/inf/lat/reports#Kr-LTCS-18-11

  20. Kriegel, F.: Joining implications in formal contexts and inductive learning in a horn description logic (Extended Version). LTCS-Report 19–02, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2019). https://tu-dresden.de/inf/lat/reports#Kr-LTCS-19-02

  21. Kriegel, F.: Most specific consequences in the description logic \(\cal{EL}\). Discrete Applied Mathematics (2019). https://doi.org/10.1016/j.dam.2019.01.029

  22. Kriegel, F., Borchmann, D.: NextClosures: parallel computation of the canonical base with background knowledge. Int. J. Gen. Syst. 46(5), 490–510 (2017)

    Article  MathSciNet  Google Scholar 

  23. Krisnadhi, A., Lutz, C.: Data complexity in the \(\cal{EL}\) family of description logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 333–347. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75560-9_25

    Chapter  Google Scholar 

  24. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of horn description logics. ACM Trans. Comput. Logic 14(1), 2:1–2:36 (2013)

    Article  MathSciNet  Google Scholar 

  25. Kupferman, O., Sattler, U., Vardi, M.Y.: The complexity of the graded \({\mu }\)-Calculus. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 423–437. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45620-1_34

    Chapter  Google Scholar 

  26. Kuznetsov, S.O., Obiedkov, S.A.: Some decision and counting problems of the Duquenne-Guigues basis of implications. Discrete Appl. Math. 156(11), 1994–2003 (2008)

    Article  MathSciNet  Google Scholar 

  27. Rudolph, S.: Relational exploration: combining description logics and formal concept analysis for knowledge specification. Doctoral thesis, Technische Universität Dresden, Dresden, Germany (2006)

    Google Scholar 

  28. Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th International Joint Conference on Artificial Intelligence, Sydney, Australia, 24–30 August 1991, pp. 466–471. Morgan Kaufmann (1991)

    Google Scholar 

  29. Stumme, G.: Attribute exploration with background implications and exceptions. In: Bock, H.H., Polasek, W. (eds.) Studies in Classification, Data Analysis, and Knowledge Organization, pp. 457–469. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-642-80098-6_39

    Chapter  MATH  Google Scholar 

  30. Tobies, S.: Complexity results and practical algorithms for logics in knowledge representation. Doctoral thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany (2001)

    Google Scholar 

Download references

Acknowledgments

The author gratefully thanks Sebastian Rudolph for the very idea of learning in Horn description logics as well as for a helpful discussion on basics of Horn description logics. The author further thanks the reviewers for their constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Kriegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kriegel, F. (2019). Joining Implications in Formal Contexts and Inductive Learning in a Horn Description Logic. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds) Formal Concept Analysis. ICFCA 2019. Lecture Notes in Computer Science(), vol 11511. Springer, Cham. https://doi.org/10.1007/978-3-030-21462-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21462-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21461-6

  • Online ISBN: 978-3-030-21462-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics