Skip to main content

Elements About Exploratory, Knowledge-Based, Hybrid, and Explainable Knowledge Discovery

  • Conference paper
  • First Online:
Formal Concept Analysis (ICFCA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11511))

Included in the following conference series:

Abstract

Knowledge Discovery in Databases (KDD) and especially pattern mining can be interpreted along several dimensions, namely data, knowledge, problem-solving and interactivity. These dimensions are not disconnected and have a direct impact on the quality, applicability, and efficiency of KDD. Accordingly, we discuss some objectives of KDD based on these dimensions, namely exploration, knowledge orientation, hybridization, and explanation. The data space and the pattern space can be explored in several ways, depending on specific evaluation functions and heuristics, possibly related to domain knowledge. Furthermore, numerical data are complex and supervised numerical machine learning methods are usually the best candidates for efficiently mining such data. However, the work and output of numerical methods are most of the time hard to understand, while symbolic methods are usually more intelligible. This calls for hybridization, combining numerical and symbolic mining methods to improve the applicability and interpretability of KDD. Moreover, suitable explanations about the operating models and possible subsequent decisions should complete KDD, and this is far from being the case at the moment. For illustrating these dimensions and objectives, we analyze a concrete case about the mining of biological data, where we characterize these dimensions and their connections. We also discuss dimensions and objectives in the framework of Formal Concept Analysis and we draw some perspectives for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Han, J. (eds.): Frequent Pattern Mining. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07821-2

    Book  MATH  Google Scholar 

  2. Alam, M., Buzmakov, A., Codocedo, V., Napoli, A.: Mining definitions from RDF annotations using formal concept analysis. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of IJCAI, pp. 823–829. AAAI Press (2015)

    Google Scholar 

  3. Alam, M., Buzmakov, A., Napoli, A.: Exploratory knowledge discovery over web of data. Discret. Appl. Math. 249, 2–17 (2018)

    Article  MathSciNet  Google Scholar 

  4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  5. Belfodil, A., Belfodil, A., Kaytoue, M.: Anytime subgroup discovery in numerical domains with guarantees. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11052, pp. 500–516. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10928-8_30

    Chapter  Google Scholar 

  6. Bendimerad, A.A., Plantevit, M., Robardet, C.: Mining exceptional closed patterns in attributed graphs. Knowl. Inf. Syst. 56(1), 1–25 (2018)

    Article  Google Scholar 

  7. Bertet, K., Demko, C., Viaud, J.-F., Guérin, C.: Lattices, closures systems and implication bases: a survey of structural aspects and algorithms. Theor. Comput. Sci. 743, 93–109 (2018)

    Article  MathSciNet  Google Scholar 

  8. De Bie, T.: Subjective interestingness in exploratory data mining. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 19–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41398-8_3

    Chapter  Google Scholar 

  9. Blockeel, H.: Data mining: from procedural to declarative approaches. New Gener. Comput. 33(2), 115–135 (2015)

    Article  Google Scholar 

  10. Brachman, R.J., Anand, T.: The process of knowledge discovery in databases. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 37–57. AAAI Press/MIT Press (1996)

    Google Scholar 

  11. Brazdil, P., Giraud-Carrier, C.G., Soares, C., Vilalta, R.: Metalearning - Applications to Data Mining. Cognitive Technologies. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-73263-1

    Book  MATH  Google Scholar 

  12. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Scalable estimates of concept stability. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) ICFCA 2014. LNCS (LNAI), vol. 8478, pp. 157–172. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07248-7_12

    Chapter  MATH  Google Scholar 

  13. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Fast generation of best interval patterns for nonmonotonic constraints. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 157–172. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23525-7_10

    Chapter  Google Scholar 

  14. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. Wiley, Chichester (2004)

    Book  Google Scholar 

  15. Codocedo, V., Lykourentzou, I., Napoli, A.: A semantic approach to concept lattice-based information retrieval. Ann. Math. Artif. Intell. 72, 169–195 (2014)

    Article  MathSciNet  Google Scholar 

  16. Codocedo, V., Napoli, A.: Formal concept analysis and information retrieval – a survey. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113, pp. 61–77. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19545-2_4

    Chapter  MATH  Google Scholar 

  17. d’Avila Garcez, A.S., et al.: Neural-symbolic learning and reasoning: contributions and challenges. In: AAAI Spring Symposium (2015)

    Google Scholar 

  18. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  19. Duivesteijn, W., Feelders, A., Knobbe, A.J.: Exceptional Model Mining - supervised descriptive local pattern mining with complex target concepts. Data Min. Knowl. Discov. 30(1), 47–98 (2016)

    Article  MathSciNet  Google Scholar 

  20. Duquenne, V.: Latticial structures in data analysis. Theor. Comput. Sci. 217, 407–436 (1999)

    Article  Google Scholar 

  21. Eklund, P., Villerd, J.: A survey of hybrid representations of concept lattices in conceptual knowledge processing. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS (LNAI), vol. 5986, pp. 296–311. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11928-6_21

    Chapter  MATH  Google Scholar 

  22. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  23. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  24. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-8_10

    Chapter  Google Scholar 

  25. Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49291-8

    Book  MATH  Google Scholar 

  26. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31881-1

    Book  MATH  Google Scholar 

  27. Grgic-Hlaca, N., Zafar, M.B., Gummadi, K.P., Weller, A.: Beyond distributive fairness in algorithmic decision making: feature selection for procedurally fair learning. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of AAAI 2018, pp. 51–60. AAAI Press (2018)

    Google Scholar 

  28. Grissa, D., Comte, B., Pétéra, M., Pujos-Guillot, E., Napoli, A.: A hybrid and exploratory approach to knowledge discovery in metabolomic data. Discrete Applied Mathematics (2019, to be published)

    Google Scholar 

  29. Grissa, D., Comte, B., Pujos-Guillot, E., Napoli, A.: A hybrid knowledge discovery approach for mining predictive biomarkers in metabolomic data. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 572–587. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1_36

    Chapter  Google Scholar 

  30. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Gianotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5) (2018)

    Article  Google Scholar 

  31. Hilario, M., Nguyen, P., Do, H., Woznica, A., Kalousis, A.: Ontology-based meta-mining of knowledge discovery workflows. In: Jankowski, N., Duch, W., Grabczewski, K. (eds.) Meta-Learning in Computational Intelligence, vol. 358, pp. 273–315. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20980-2_9

    Chapter  Google Scholar 

  32. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinform. 15(S-6), I1 (2014)

    Google Scholar 

  33. Hristoskova, A., Boeva, V., Tsiporkova, E.: An integrative clustering approach combining particle swarm optimization and formal concept analysis. In: Böhm, C., Khuri, S., Lhotská, L., Renda, M.E. (eds.) ITBAM 2012. LNCS, vol. 7451, pp. 84–98. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32395-9_7

    Chapter  Google Scholar 

  34. Janowicz, K., van Harmelen, F., Hendler, J.A., Hitzler, P.: Why the data train needs semantic rails. AI Mag. 36(1), 5–14 (2015)

    Article  Google Scholar 

  35. Kaytoue, M., Codocedo, V., Baixeries, J., Napoli, A.: Three interrelated FCA methods for mining biclusters of similar values on columns. In: Bertet, K., Rudolph, S. (eds.) Proceedings of CLA. CEUR Workshop Proceedings, vol. 1252, pp. 243–254 (2014)

    Google Scholar 

  36. Kaytoue, M., Codocedo, V., Buzmakov, A., Baixeries, J., Kuznetsov, S.O., Napoli, A.: Pattern structures and concept lattices for data mining and knowledge processing. In: Bifet, A., et al. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9286, pp. 227–231. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23461-8_19

    Chapter  Google Scholar 

  37. Kaytoue, M., Kuznetsov, S.O., Macko, J., Napoli, A.: Biclustering meets triadic concept analysis. Ann. Math. Artif. Intell. 70(1–2), 55–79 (2014)

    Article  MathSciNet  Google Scholar 

  38. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Inf. Sci. 181(10), 1989–2001 (2011)

    Article  MathSciNet  Google Scholar 

  39. Kaytoue, M., Plantevit, M., Zimmermann, A., Bendimerad, A.A., Robardet, C.: Exceptional contextual subgraph mining. Mach. Learn. 106(8), 1171–1211 (2017)

    Article  MathSciNet  Google Scholar 

  40. Kuznetsov, S.O., Makhalova, T.P.: On interestingness measures of formal concepts. Inf. Sci. 442–443, 202–219 (2018)

    Article  MathSciNet  Google Scholar 

  41. Lavrac, N., Kavsek, B., Flach, P.A., Todorovski, L.: Subgroup discovery with CN2-SD. J. Mach. Learn. Res. 5, 153–188 (2004)

    MathSciNet  Google Scholar 

  42. Makhalova, T.P., Kuznetsov, S.O., Napoli, A.: A first study on what MDL can do for FCA. In: Ignatov, D.I., Nourine, L. (eds.) Proceedings of CLA, CEUR Workshop Proceedings, vol. 2123, pp. 25–36 (2018)

    Google Scholar 

  43. Nguyen, P., Hilario, M., Kalousis, A.: Using meta-mining to support data mining workflow planning and optimization. J. Artif. Intell. Res. (JAIR) 51, 605–644 (2014)

    Article  Google Scholar 

  44. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining the predictions of any classifier. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of SIGKDD, pp. 1135–1144. ACM (2016)

    Google Scholar 

  45. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 67(1), 81–108 (2013)

    Article  MathSciNet  Google Scholar 

  46. Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(4) (2018)

    Google Scholar 

  47. Sourek, G., Aschenbrenner, V., Zelezný, F., Schockaert, S., Kuzelka, O.: Lifted relational neural networks: efficient learning of latent relational structures. J. Artif. Intell. Res. 62, 140–151 (2018)

    Article  MathSciNet  Google Scholar 

  48. Tan, P.-N., Steinbach, M., Karpatne, A., Kumar, V.: Introduction to Data Mining, 2nd edn. Pearson, New York (2018)

    Google Scholar 

  49. Tran, S.N., d’Avila Garcez, A.S.: Deep logic networks: inserting and extracting knowledge from deep belief networks. IEEE Trans. Neural Netw. Learn. Syst. 29(2), 246–258 (2018)

    Article  MathSciNet  Google Scholar 

  50. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley Publishing Company, Reading (1977)

    MATH  Google Scholar 

  51. Ugarte, W., et al.: Skypattern mining: from pattern condensed representations to dynamic constraint satisfaction problems. Artif. Intell. 244, 48–69 (2017)

    Article  MathSciNet  Google Scholar 

  52. Leeuwen, M.: Interactive data exploration using pattern mining. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 169–182. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43968-5_9

    Chapter  Google Scholar 

  53. Vreeken, J., Tatti, N.: Interesting patterns. In: Aggarwal and Han [1], pp. 105–134

    Google Scholar 

  54. Yoneda, Y., Sugiyama, M., Washio, T.: Learning graph representation via formal concept analysis. CoRR, abs/1812.03395 (2018)

    Google Scholar 

  55. Zafar, M.B., Valera, I., Gomez-Rodriguez, M., Gummadi, K.P., Weller, A.: From parity to preference-based notions of fairness in classification. In: Guyon, I., et al. (eds.) Proceedings of NIPS, pp. 228–238 (2017)

    Google Scholar 

  56. Zaki, M.J., Meira Jr., W.: Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, New York (2014)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Couceiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Couceiro, M., Napoli, A. (2019). Elements About Exploratory, Knowledge-Based, Hybrid, and Explainable Knowledge Discovery. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds) Formal Concept Analysis. ICFCA 2019. Lecture Notes in Computer Science(), vol 11511. Springer, Cham. https://doi.org/10.1007/978-3-030-21462-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21462-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21461-6

  • Online ISBN: 978-3-030-21462-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics