Skip to main content

Unsupervised Deep Clustering for Fashion Images

  • Conference paper
  • First Online:
Knowledge Management in Organizations (KMO 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1027))

Included in the following conference series:

Abstract

In many visual domains like fashion, building an effective unsupervised clustering model depends on visual feature representation instead of structured and semi-structured data. In this paper, we propose a fashion image deep clustering (FiDC) model which includes two parts, feature representation and clustering. The fashion images are used as the input and are processed by a deep stacked autoencoder to produce latent feature representation, and the output of this autoencoder will be used as the input of the clustering task. Since the output of the former has a great influence on the later, the strategy adopted in the model is to integrate the learning process of the autoencoder and the clustering together. The autoencoder is trained with the optimal number of neurons per hidden layers to avoid overfitting and we optimize the cluster centroid by using stochastic gradient descent and backpropagation algorithm. We evaluate FiDC model on a real-world fashion dataset downloaded from Amazon where images have been extracted into 4096-dimensional visual feature vectors by convolutional neural networks. The experimental results show that our model achieves state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiapour, M.H., Han, X., Lazebnik, S., Berg, A.C., Berg, T.L.: Where to buy it: matching street clothing photos in online shops. In: ICCV, Santiago (2015)

    Google Scholar 

  2. Chen, Q., Huang, J., Feris, R., Brown, L.M., Dong, J., Yan, S.: Deep domain adaptation for describing people based on fine-grained clothing attributes. In: CVPR, Boston (2015)

    Google Scholar 

  3. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: CVPR, Las Vegas (2016)

    Google Scholar 

  4. Yamaguchi, K., Kiapour, M.H., Ortiz, L.E., Berg, T. L.: Parsing clothing in fashion photographs. In: CCPR, pp. 3570–3577 (2012)

    Google Scholar 

  5. Yamaguchi, K., Kiapour, M.H., Ortiz, L.E., Berg, T.L.: Retrieving similar styles to parse clothing. IEEE Trans. Pattern Anal. Mach. Intell. 37(5), 1028–1040 (2015)

    Article  Google Scholar 

  6. Al-Halah, Z., Stiefelhagen, R., Grauman, K.: Fashion forward: forecasting visual style in fashion. In: IEEE International Conference on Computer Vision (ICCV), Venice, Italy (2017)

    Google Scholar 

  7. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  8. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  9. Eamonn, K., Abdullah, M.: Curse of dimensionality. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Machine Learning and Data Mining. Springer, Boston (2017). https://doi.org/10.1007/978-0-387-39940-9

    Chapter  Google Scholar 

  10. Hinton, E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  11. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, New York (2017)

    Google Scholar 

  12. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: IJCAI (2017)

    Google Scholar 

  13. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In ICML (2016)

    Google Scholar 

  14. Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.-Y.: Learning deep representations for graph clustering. In: AAAI (2014)

    Google Scholar 

  15. Peng, X., Xiao, S., Feng, J., Yau, W.-Y., Yi, Z.: Deep subspace clustering with sparsity prior. In: IJCAI (2016)

    Google Scholar 

  16. Hsu, C.-C., Lin, C.-W.: Cnn-based joint clustering and representation learning with feature drift compensation for large-scale image data. IEEE Trans. Multimed. 20(2), 421–429 (2017)

    Article  Google Scholar 

  17. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Chowdhury, A.M.S., Rahman, M.S., Khanom, A., Chowdhury, T. I., Uddin, A.: On stacked denoising autoencoder based pre-training of ANN for isolated handwritten Bengali numerals dataset recognition. In: ICERIE, Sylhet (2017)

    Google Scholar 

  19. Krizhevsky, A., Hinton, G.E.: Using very deep autoencoders for content-based image retrieval. In: ESANN (2011)

    Google Scholar 

  20. Sarle, W.S.: Stopped training and other remedies for overfitting. In: Proceedings of the 27th Symposium on the Interface of Computing Science and Statistics (1995)

    Google Scholar 

  21. Hinton, G., Salakhutdinov, R.: Learning a non-linear embedding by preserving class neighbourhood structure. In: International Conference on Artificial Intelligence and Statistics (2007). http://proceedings.mlr.press/v2/salakhutdinov07a.html

  22. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS (2011)

    Google Scholar 

  23. van der Maaten, L., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  24. McAuley, J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR, New York (2015)

    Google Scholar 

  25. Shelhamer, E., Donahue, J., Jia, Y., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: ACM (2014)

    Google Scholar 

  26. Krizhevsky, A., Sutskever,I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  27. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: IW3C2 (2016)

    Google Scholar 

  28. Cai, D., He, X., Han, J.: Locally consistent concept factorization for document clustering. IEEE Trans. Knowl. Data Eng. 23(6), 902–913 (2011)

    Article  Google Scholar 

  29. Santos, J.M., Embrechts, M.: On the use of the adjusted rand index as a metric for evaluating supervised classification. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 175–184. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04277-5_18

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was partly funded by the National Natural Science Foundation of China (No. 61402100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cairong Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, C., Malhi, U.S., Huang, Y., Tao, R. (2019). Unsupervised Deep Clustering for Fashion Images. In: Uden, L., Ting, IH., Corchado, J. (eds) Knowledge Management in Organizations. KMO 2019. Communications in Computer and Information Science, vol 1027. Springer, Cham. https://doi.org/10.1007/978-3-030-21451-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21451-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21450-0

  • Online ISBN: 978-3-030-21451-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics