Skip to main content

Efficient Estimation of Ontology Entities Distributed Representations

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1027))

Abstract

Ontologies have been used as a form of knowledge representation in different fields such as artificial intelligence, semantic web and natural language processing. The success caused by deep learning in recent years as a major upheaval in the field of artificial intelligence depends greatly on the data representation, since these representations can encode different types of hidden syntactic and semantic relationships in data, making their use very common in data science tasks. Ontologies do not escape this trend, applying deep learning techniques in the ontology-engineering field has heightened the need to learn and generate representations of the ontological data, which will allow ontologies to be exploited by such models and algorithms and thus automatizing different ontology-engineering tasks. This paper presents a novel approach for learning low dimensional continuous feature representations for ontology entities based on the semantic embedded in ontologies, using a multi-input feed-forward neural network trained using noise contrastive estimation technique. Semantically similar ontology entities will have relatively close corresponding representations in the projection space. Thus, the relationships between the ontology entities representations mirrors exactly the semantic relations between the corresponding entities in the source ontology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://obofoundry.org.

  2. 2.

    https://bioportal.bioontology.org.

References

  1. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisit. 5(2), 199–220 (1993)

    Article  Google Scholar 

  2. Gómez-Pérez, A., Corcho, O.: Ontology languages for the semantic web. IEEE Intell. Syst. 17(1), 54–60 (2002)

    Article  Google Scholar 

  3. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

    MATH  Google Scholar 

  4. Schwenk, H., Dchelotte, D., Gauvain, J.-L.: Continuous space language models for statistical machine translation. In: Proceedings of the COLING/ACL on Main Conference Poster Sessions, pp. 723–730. Association for Computational Linguistics (2006)

    Google Scholar 

  5. Schwenk, H.: CSLM-a modular open-source continuous space language modeling toolkit. In: INTERSPEECH, pp. 1198–1202 (2013)

    Google Scholar 

  6. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  8. Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 746–751 (2013)

    Google Scholar 

  9. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  10. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  11. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  12. Yan, S., Xu, D., Zhang, B., Zhang, H.-J.: Graph embedding: a general framework for dimensionality reduction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 830–837. IEEE (2005)

    Google Scholar 

  13. Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)

    Article  Google Scholar 

  14. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  15. Ristoski, P., Rosati, J., Di Noia, T., De Leone, R., Paulheim, H.: Rdf2Vec: RDF graph embeddings and their applications. Semant. Web (Preprint), 1–32 (2018)

    Google Scholar 

  16. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global RDF vector space embeddings. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 190–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_12

    Chapter  Google Scholar 

  17. Bakarov, A.: A survey of word embeddings evaluation methods. CoRR, abs/1801.09536 (2018)

    Google Scholar 

  18. Schnabel, T., Labutov, I., Mimno, D., Joachims, T.: Evaluation methods for unsupervised word embeddings. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 298–307 (2015)

    Google Scholar 

  19. Mnih, A., Kavukcuoglu, K.: Learning word embeddings efficiently with noise-contrastive estimation. In: Advances in Neural Information Processing Systems, pp. 2265–2273 (2013)

    Google Scholar 

  20. Dyer, C.: Notes on noise contrastive estimation and negative sampling. arXiv preprint arXiv:1410.8251 (2014)

  21. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 297–304 (2010)

    Google Scholar 

  22. Smith, B., et al.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25(11), 1251 (2007)

    Article  Google Scholar 

  23. Whetzel, P.L., et al.: BioPortal: enhanced functionality via new web services from the national center for biomedical ontology to access and use ontologies in software applications. Nucleic Acids Res. 39(suppl\_2), W541–W545 (2011)

    Article  Google Scholar 

  24. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  25. Morales, J., et al.: A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS catalog. Genome Biology. 19(1), 21 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This paper is funded by the International Exchange Program of Harbin Engineering University for Innovation-oriented Talented Cultivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achref Benarab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benarab, A., Sun, J., Refoufi, A., Guan, J. (2019). Efficient Estimation of Ontology Entities Distributed Representations. In: Uden, L., Ting, IH., Corchado, J. (eds) Knowledge Management in Organizations. KMO 2019. Communications in Computer and Information Science, vol 1027. Springer, Cham. https://doi.org/10.1007/978-3-030-21451-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21451-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21450-0

  • Online ISBN: 978-3-030-21451-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics