Skip to main content

Extraction of RDF Statements from Text

  • Conference paper
  • First Online:
Knowledge Graphs and Semantic Web (KGSWC 2019)

Abstract

The vision of the Semantic Web is to get information with a defined meaning in a way that computers and people can work collaboratively. In this sense, the RDF model provides such a definition by linking and representing resources and descriptions through defined schemes and vocabularies. However, much of the information able to be represented is contained within plain text, which results in an unfeasible task by humans to annotate large scale data sources such as the Web. Therefore, this paper presents a strategy for the extraction and representation of RDF statements from text. The idea is to provide an architecture that receives sentences and returns triples with elements linked to resources and vocabularies of the Semantic Web. The results demonstrate the feasibility of representing RDF statements from text through an implementation following the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An ontology defines the concepts, terms, classes, taxonomies, and rules of a domain [11].

  2. 2.

    In this context, knowledge elements refer to Conceptual Knowledge [22] in terms of things or concepts and the way they are related to each other with the support of an ontology.

  3. 3.

    https://www.w3.org/TR/sparql11-overview/. All URLs in this paper were last accessed on 2019/04/15.

  4. 4.

    Different to formatted text, plain text does not contain any style information or graphical objects and refers to only readable characters.

  5. 5.

    Semantic roles identify the participants in an event guided by a verb and its underlying relationship [13].

  6. 6.

    FOX framework. http://aksw.org/Projects/FOX.html.

  7. 7.

    https://wiki.dbpedia.org.

  8. 8.

    https://developers.google.com/freebase/.

  9. 9.

    WordNet is a lexical database for English http://wordnet.princeton.edu.

  10. 10.

    From a First Order Logic perspective, the predicate of a sentence corresponds to the main verb and any auxiliaries surrounding it.

  11. 11.

    Although the architecture only admits plain text as input data, there are several types of data that could be considered such as structured data (e.g., databases, tables), images, or raw data (e.g., data from sensors).

  12. 12.

    In this work, we indistinctly refer to named entities as only entities.

  13. 13.

    www.wikidata.org.

  14. 14.

    This process is often supported by the Semantic Role Labeling task, which helps to determine the role or action performed by an entity within a statement.

  15. 15.

    Stanford CoreNLP models https://stanfordnlp.github.io/CoreNLP/.

  16. 16.

    MatePlus https://github.com/microth/mateplus.

  17. 17.

    Data models downloaded from https://code.google.com/archive/p/mate-tools/downloads.

  18. 18.

    https://premon.fbk.eu/query.html.

  19. 19.

    Jena https://jena.apache.org.

  20. 20.

    https://www.w3.org/TR/trig/.

  21. 21.

    https://dailytech.page.

  22. 22.

    https://www.computerweekly.com.

  23. 23.

    The LonelyPlanet dataset was originally downloaded by Martin Kavalec from the site http://www.lonelyplanet.com/destinations.

  24. 24.

    http://mlg.ucd.ie/datasets/bbc.html.

References

  1. Antoniou, G., Groth, P.T., van Harmelen, F., Hoekstra, R.: A Semantic Web Primer, 3rd edn. MIT Press, Cambridge (2012)

    Google Scholar 

  2. Auer, S., Bryl, V., Tramp, S. (eds.): Linked Open Data - Creating Knowledge Out of Interlinked Data - Results of the LOD2 Project. LNCS, vol. 8661. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-09846-3

    Google Scholar 

  3. Auer, S., Lehmann, J., Ngonga Ngomo, A.-C., Zaveri, A.: Introduction to linked data and its lifecycle on the web. In: Rudolph, S., Gottlob, G., Horrocks, I., van Harmelen, F. (eds.) Reasoning Web 2013. LNCS, vol. 8067, pp. 1–90. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39784-4_1

    Chapter  Google Scholar 

  4. Augenstein, I., Maynard, D., Ciravegna, F.: Distantly supervised web relation extraction for knowledge base population. Semant. Web 7(4), 335–349 (2016). https://doi.org/10.3233/SW-150180

    Article  Google Scholar 

  5. Augenstein, I., Padó, S., Rudolph, S.: LODifier: generating linked data from unstructured text. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 210–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_21

    Chapter  Google Scholar 

  6. Chabchoub, M., Gagnon, M., Zouaq, A.: Collective disambiguation and semantic annotation for entity linking and typing. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, pp. 33–47. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-46565-4_3

    Chapter  Google Scholar 

  7. Cimiano, P.: Ontology Learning and Population from Text - Algorithms. Evaluation and Applications. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-39252-3

    Book  Google Scholar 

  8. Del Corro, L., Gemulla, R.: Clausie: clause-based open information extraction. In: International Conference on World Wide Web, pp. 355–366. ACM (2013). https://doi.org/10.1145/2488388.2488420

  9. Dutta, A., Meilicke, C., Stuckenschmidt, H.: Enriching structured knowledge with open information. In: Gangemi, A., Leonardi, S., Panconesi, A. (eds.) World Wide Web Conference (WWW), pp. 267–277. ACM (2015)

    Google Scholar 

  10. Exner, P., Nugues, P.: Entity extraction: from unstructured text to DBpedia RDF triples. In: The Web of Linked Entities Workshop (WoLE 2012), pp. 58–69. CEUR-WS (2012)

    Google Scholar 

  11. Fensel, D., et al.: Enabling Semantic Web Services. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-34520-6

    Book  Google Scholar 

  12. Gangemi, A., Presutti, V., Recupero, D.R., Nuzzolese, A.G., Draicchio, F., Mongiovì, M.: Semantic web machine reading with FRED. Semant. Web 8(6), 873–893 (2017). https://doi.org/10.3233/SW-160240

    Article  Google Scholar 

  13. Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Comput. Linguist. 28(3), 245–288 (2002). https://doi.org/10.1162/089120102760275983

    Article  Google Scholar 

  14. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers, San Rafael (2011). https://doi.org/10.2200/S00334ED1V01Y201102WBE001

    Article  Google Scholar 

  15. Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: what works well with wikidata? In: Liebig, T., Fokoue, A. (eds.) International Workshop on Scalable Semantic Web Knowledge Base Systems Co-located with ISWC, pp. 32–47. CEUR-WS.org (2015)

    Google Scholar 

  16. Waitelonis, J., Exeler, C., Sack, H.: Linked data enabled generalized vector space model to improve document retrieval. In: NLP & DBpedia Workshop in Conjunction with ISWC 2015. CEUR (2015)

    Google Scholar 

  17. Kertkeidkachorn, N., Ichise, R.: An automatic knowledge graph creation framework from natural language text. IEICE Trans. 101(D(1)), 90–98 (2018). https://doi.org/10.1587/transinf.2017SWP0006

    Article  Google Scholar 

  18. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)

    Article  Google Scholar 

  19. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Annual Meeting of the Association for Computational Linguistics (ACL), pp. 55–60 (2014)

    Google Scholar 

  20. Martinez-Rodriguez, J.L., Hernandez, J., Lopez-Arevalo, I., Rios-Alvarado, A.B.: A strategy for the integration of named entity extraction and linking results. In: Proceedings of the 3rd International Workshop on Semantic Web 2018 Co-located with 15th International Congress on Information (INFO 2018), 7 March 2018, Havana, Cuba, pp. 13–20. CEUR-WS.org (2018)

    Google Scholar 

  21. Martinez-Rodriguez, J.L., Hogan, A., Lopez-Arevalo, I.: Information extraction meets the semantic web: a survey. Semant. Web J. (2018, to appear)

    Google Scholar 

  22. Milton, N.R.: Knowledge Acquisition in Practice: A Step-by-Step Guide. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-84628-861-6

    Book  Google Scholar 

  23. Pinto, A.M., Oliveira, H.G., Alves, A.O.: Comparing the performance of different NLP toolkits in formal and social media text. In: 5th Symposium on Languages, Applications and Technologies, SLATE, pp. 3:1–3:16 (2016)

    Google Scholar 

  24. Randolph, J.J.: Free-marginal multirater kappa (multirater k [free]): An alternative to fleiss’ fixed-marginal multirater kappa. In: Joensuu Learning and Instruction Symposium (2005)

    Google Scholar 

  25. Rusu, D., Fortuna, B., Mladenic, D.: Automatically annotating text with linked open data. In: Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M. (eds.) WWW2011 Workshop on Linked Data on the Web. CEUR-WS.org (2011)

    Google Scholar 

  26. Unger, C., Freitas, A., Cimiano, P.: An introduction to question answering over linked data. In: Koubarakis, M., et al. (eds.) Reasoning Web 2014. LNCS, vol. 8714, pp. 100–140. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10587-1_2

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Fondo SEP-Cinvestav, Project No. 229. We would like to thank the reviewers for their comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose L. Martinez-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinez-Rodriguez, J.L., Lopez-Arevalo, I., Rios-Alvarado, A.B., Hernandez, J., Aldana-Bobadilla, E. (2019). Extraction of RDF Statements from Text. In: Villazón-Terrazas, B., Hidalgo-Delgado, Y. (eds) Knowledge Graphs and Semantic Web. KGSWC 2019. Communications in Computer and Information Science, vol 1029. Springer, Cham. https://doi.org/10.1007/978-3-030-21395-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21395-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21394-7

  • Online ISBN: 978-3-030-21395-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics