Advertisement

Categories, Musical Instruments, and Drawings: A Unification Dream

  • Maria MannoneEmail author
  • Federico Favali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)

Abstract

The mathematical formalism of category theory allows to investigate musical structures at both low and high levels, performance practice (with musical gestures) and music analysis. Mathematical formalism can also be used to connect music with other disciplines such as visual arts. In our analysis, we extend former studies on category theory applied to musical gestures, including musical instruments and playing techniques. Some basic concepts of categories may help navigate within the complexity of several branches of contemporary music research, giving it a unitarian character. Such a ‘unification dream,’ that we can call ‘cARTegory theory,’ also includes metaphorical references to topos theory.

Keywords

Category theory Gestural similarity Classifying toposes 

References

  1. 1.
    Antoniadis, P., Bevilacqua, F.: Processing of symbolic music notation via multimodal performance data: Brian Ferneyhough’s Lemma-Icon-Epigram for solo piano, phase 1. In: Hoadley, R., Nash, C., Fober, D. (eds.) Proceedings of TENOR 2016, pp. 127–136 (2016)Google Scholar
  2. 2.
    Antoniadis, P.: Embodied navigation of complex piano notation: rethinking musical interaction from a performer’s perspective. Ph.D. thesis, Université de Strasbourg, pp. 274–278 (2018)Google Scholar
  3. 3.
    Arias, J.S.: Spaces of gestures are function spaces. J. Math. Music 12(2), 89–105 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arias, J.S.: Gestures on locales and localic topoi. In: Pareyon, G., Pina-Romero, S., Agustin-Aquino, O.A., Lluis-Puebla, E. (eds.) The Musical-Mathematical Mind. CMS, pp. 29–39. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-47337-6_4CrossRefGoogle Scholar
  5. 5.
    Caramello, O.: Theories, Sites, Toposes. Oxford University Press, New York (2018)CrossRefGoogle Scholar
  6. 6.
    Caramello, O.: The theory of topos-theoretic ‘bridges’-a conceptual introduction. Glass-bead (2016). http://www.glass-bead.org/article/the-theory-of-topos-theoretic-bridges-a-conceptual-introduction/?lang=enview
  7. 7.
    Caramello, O.: The unification of mathematics via topos theory. ArXiv arXiv:1006.3930 (2010)
  8. 8.
    Collins, T., Mannone, M., Hsu, D., Papageorgiou, D.: Psychological validation of mathematical gesture theory, Submitted (2018)Google Scholar
  9. 9.
    Delle Monache, S., Rocchesso, D., Bevilacqua, F., Lemaitre, G., Baldan, S., Cera, A.: Embodied sound design. Int. J. Hum.-Comput. Stud. 118, 47–59 (2018)CrossRefGoogle Scholar
  10. 10.
    Dick, R.: The Other Flute. Lauren Keiser Music Publishing, Oxford (1989)Google Scholar
  11. 11.
    Di Donato, B., Bullock, J., Tanaka, A.: Myo Mapper: a Myo armband to OSC mapper. In: Dahl, L., Bowman, D., Martin, T. (eds.) Proceedings of NIME Conference, Blacksburg, USA, pp. 138–143 (2018)Google Scholar
  12. 12.
    Ehresmann, A., Gomez-Ramirez, J.: Conciliating neuroscience and phenomenology via category theory. Prog. Biophys. Mol. Biol. (JPMB) 19(2), 347–359 (2016)Google Scholar
  13. 13.
    Fiore, T., Noll, T., Satyendra, R.: Morphisms of generalized interval systems and PR-groups. J. Math. Music 7(1), 3–27 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fish, S., L’Huillier, N.: Telemetron: a musical instrument for performance in zero gravity. In: Dahl, L., Bowman, D., Martin, T. (eds.) Proceedings of NIME Conference, Blacksburg, USA, pp. 315–317 (2018)Google Scholar
  15. 15.
    Genette, G.: L’opera dell’arte, two volumes. Clueb, Bologna (1999)Google Scholar
  16. 16.
    Guo, C., Song-Chun, Z., Wu, Y. N.: Towards a mathematical theory of primal sketch and sketchability. In: 9th IEEE Conference on Computer Vision (2003)Google Scholar
  17. 17.
    Heller, F., Cheung Ruiz, I.M., Borchers, J.: An augmented flute for beginners. In: Cumhur Erkut, C., De Götzen, A. (eds.) Proceedings of NIME Conference, Copenhagen, Denmark, pp. 34–37 (2017)Google Scholar
  18. 18.
    Isherwood, N.: The Techniques of Singing. Bärenreiter, Germany (2013)Google Scholar
  19. 19.
    Isnard, V., Taffou, M., Viaud-Delmon, I., Suied, C: Auditory sketches: very sparse representations of sounds are still recognizable. PloS One 11(3) (2016).  https://doi.org/10.1371/journal.pone.0150313CrossRefGoogle Scholar
  20. 20.
    Jedrzejewski, F.: Hétérotopies musicales. Modéles mathématiques de la musique. Éditions Hermann, Paris (2019)Google Scholar
  21. 21.
    Kelkar, T., Jensenius, A.R.: Analyzing free-hand sound-tracing of melodic phrases. Appl. Sci. 8(135), 1–21 (2018)Google Scholar
  22. 22.
    Kubota, A., Hori, H., Naruse, M., Akiba, F.: A new kind of aesthetics - the mathematical structure of the aesthetic. Philosophies 3(14), 1–10 (2017)Google Scholar
  23. 23.
    Kubovy, M., Schutz, M.: Audio-visual objects. Rev. Philos. Psychol. 1(1), 41–61 (2010)CrossRefGoogle Scholar
  24. 24.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1978).  https://doi.org/10.1007/978-1-4757-4721-8CrossRefzbMATHGoogle Scholar
  25. 25.
    Mannone, M.: Introduction to gestural similarity. An application of category theory to the orchestra. J. Math. Music 12(3), 63–87 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mannone, M.: Knots, music and DNA. J. Creat. Music Syst. 2(2), 1–23 (2018). https://www.jcms.org.uk/article/id/523/MathSciNetGoogle Scholar
  27. 27.
    Mannone, M., Favali, F.: Shared structures and transformations in mathematics and music: from categories to musicology. In: ESCOM-Italy Primo Meeting, Roma, Italy (2018)Google Scholar
  28. 28.
    Mannone, M.: Mathematics, Music, Nature (in Progress)Google Scholar
  29. 29.
    Mannone, M., Kitamura, E., Huang, J., Sugawara, R., Kitamura, Y.: CubeHarmonic: a new interface from a magnetic 3D motion tracking system to music performance. In: Dahl, L., Bowman, D., Martin, T. (eds.) Proceedings of NIME Conference, Blacksburg, USA, pp. 350–351 (2018)Google Scholar
  30. 30.
    Mastropasqua, M.: L’evoluzione della tonalità nel XX secolo. L’atonalità in Schoenberg. Clueb, Bologna (2004)Google Scholar
  31. 31.
    Mazzola, G., et al.: The Topos of Music, 2nd edn. Springer, Heidelberg (2018)zbMATHGoogle Scholar
  32. 32.
    Mazzola, G., Andreatta, M.: Diagrams, gestures and formulae in music. J. Math. Music 1(1), 23–46 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Mazzola, G., Mannone, M.: Global functorial hypergestures over general skeleta for musical performance. J. Math. Music 10(7), 227–243 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Popoff, A.: Using monoidal categories in the transformational study of musical time-spans and rhythms. arXiv:1305.7192v3 (2013)
  35. 35.
    Russolo, L.: L’arte dei rumori. Edizioni futuriste di poesia, Milano (1910)Google Scholar
  36. 36.
    Sloboda, J.: Musical Mind. Oxford Science Publication, New York (2008)Google Scholar
  37. 37.
    Spence, C.: Crossmodal correspondences: a tutorial review. Atten. Percept. Psychophys. 73(4), 971–995 (2011)CrossRefGoogle Scholar
  38. 38.
    Turchet, L.: Smart musical instruments: vision, design principles, and future directions. IEEE Access 7(1), 8944–8963 (2019)CrossRefGoogle Scholar
  39. 39.
    Turchet, L.: Smart Mandolin: autobiographical design, implementation, use cases, and lessons learned. In: Cunningham, S., Picking, R. (eds.) Proceedings of the Audio Mostly Conference 2018, pp. 13:1–13:7, Wrexham Glyndwr University, Wrexham (2018). http://doi.acm.org/10.1145/3243274.3243280

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsUniversity of PalermoPalermoItaly
  2. 2.LuccaItaly

Personalised recommendations