Advertisement

Fourier Phase and Pitch-Class Sum

  • Dmitri Tymoczko
  • Jason YustEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)

Abstract

Music theorists have proposed two very different geometric models of musical objects, one based on voice leading and the other based on the Fourier transform. On the surface these models are completely different, but they converge in special cases, including many geometries that are of particular analytical interest.

Keywords

Voice leading Fourier transform Tonal harmony Musical scales Chord geometry 

References

  1. 1.
    Amiot, E.: Music Through Fourier Space. Discrete Fourier Transform in Music Theory. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45581-5CrossRefzbMATHGoogle Scholar
  2. 2.
    Callender, C.: Continuous transformations. Mus. Theory Online 10(3) (2004)Google Scholar
  3. 3.
    Callender, C.: Continuous harmonic spaces. J. Mus. Theory 51(2), 277–332 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Callender, C., Quinn, I., Tymoczko, D.: Generalized voice-leading spaces. Science 320(5874), 346–348 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hook, J. Signature transformations. In: Hyde, M., Smith, C. (eds.) Mathematics and Music: Chords, Collections, and Transformations, pp. 137–60. University of Rochester Press (2008)Google Scholar
  6. 6.
    Hughes, James R.: Using fundamental groups and groupoids of chord spaces to model voice leading. In: Collins, Tom, Meredith, David, Volk, Anja (eds.) MCM 2015. LNCS (LNAI), vol. 9110, pp. 267–278. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20603-5_28CrossRefGoogle Scholar
  7. 7.
    Hughes, J.R.: Orbifold path models for voice leading: dealing with doubling. In: Monteil, M., Peck, R.W. (eds.) Mathematical Music Theory: Algebraic, Geometric, Combinatorial, Topological and Applied Approaches to Understanding Musical Phenomena, pp. 185–94. World Scientific (2018)Google Scholar
  8. 8.
    Milne, A.J., Bulger, D., Herff, S.A.: Exploring the space of perfectly balanced rhythms and scales. J. Math. and Mus. 11(3), 101–133 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Quinn, I.: A unified theory of chord quality in equal temperaments. University of Rochester, PhD dissertation (2004)Google Scholar
  10. 10.
    Quinn, I.: General equal-tempered harmony: parts two and three. Persp. New Mus. 45(1), 4–63 (2006)Google Scholar
  11. 11.
    Sivakumar, A., Tymoczko, D.: Intuitive musical homotopy. In: Monteil, M., Peck, R.W. (eds.) Mathematical Music Theory: Algebraic, Geometric, Combinatorial, Topological and Applied Approaches to Understanding Musical Phenomena, pp. 233–51. World Scientific (2018)Google Scholar
  12. 12.
    Tymoczko, D.: Voice leadings as generalized key signatures. Mus. Theory Online 11(4) (2005)Google Scholar
  13. 13.
    Tymoczko, D.: The geometry of musical chords. Science 313, 72–74 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tymoczko, D.: Scale theory, serial theory, and voice leading. Mus. Anal. 27(1), 1–49 (2008)CrossRefGoogle Scholar
  15. 15.
    Tymoczko, D.: Set class similarity, voice leading, and the Fourier transform. J. Mus. Theory 52(2), 251–272 (2008)CrossRefGoogle Scholar
  16. 16.
    Tymoczko, D.: A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice. Oxford University Press, Oxford (2011)Google Scholar
  17. 17.
    Tymoczko, D.: Tonality: An owner’s manual. Unpub. MSGoogle Scholar
  18. 18.
    Yust, J.: A space for inflections: following up on JMTs special issue on mathematical theories of voice leading. J. Math. Mus. 7(3), 175–193 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yust, Jason: Applications of DFT to the theory of twentieth-century harmony. In: Collins, Tom, Meredith, David, Volk, Anja (eds.) MCM 2015. LNCS (LNAI), vol. 9110, pp. 207–218. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20603-5_22CrossRefGoogle Scholar
  20. 20.
    Yust, J.: Schubert’s harmonic language and Fourier phase space. J. Mus. Theory 59(1), 121–181 (2015)CrossRefGoogle Scholar
  21. 21.
    Yust, J.: Special collections: renewing set theory. J. Mus. Theory 60(2), 213–262 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yust, J.: Organized Time: Rhythm, Tonality, and Form. Oxford University Press, Oxford (2018)CrossRefGoogle Scholar
  23. 23.
    Yust, J.: Ganymed’s heavenly descent. Mus. Anal. 38 (Forthcoming)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Princeton UniversityPrincetonUSA
  2. 2.Boston UniversityBostonUSA

Personalised recommendations