Advertisement

Groupoids and Wreath Products of Musical Transformations: A Categorical Approach from poly-Klumpenhouwer Networks

  • Alexandre PopoffEmail author
  • Moreno Andreatta
  • Andrée Ehresmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)

Abstract

Klumpenhouwer networks (K-nets) and their recent categorical generalization, poly-Klumpenhouwer networks (PK-nets), are network structures allowing both the analysis of musical objects through the study of the transformations between their constituents, and the comparison of these objects between them. In this work, we propose a groupoid-based approach to transformational music theory, in which transformations of PK-nets are considered rather than ordinary sets of musical objects. We show how groupoids of musical transformations can be constructed, and provide an application of their use in post-tonal music analysis with Berg’s Four pieces for clarinet and piano, Op. 5/2. In a second part, we show how these groupoids are linked to wreath products through the notion of groupoid bisections.

Keywords

Klumpenhouwer network Transformational music theory Category theory Groupoid Wreath product 

References

  1. 1.
    Ehresmann, C.: Catégories topologiques et catégories différentiables. In: Colloque de Géométrie Différentielle Globale. C.B.R.M. pp. 137–150. Librairie Universitaire, Louvain (1959)Google Scholar
  2. 2.
    Ehresmann, C.: Categories topologiques. iii. Indagationes Mathematicae (Proceedings) 69, 161–175 (1966).  https://doi.org/10.1016/S1385-7258(66)50023-3CrossRefzbMATHGoogle Scholar
  3. 3.
    Fiore, T.M., Noll, T.: Commuting groups and the topos of triads. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS (LNAI), vol. 6726, pp. 69–83. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21590-2_6CrossRefzbMATHGoogle Scholar
  4. 4.
    Hook, J.: Uniform triadic transformations. J. Music Theory 46(1/2), 57–126 (2002). http://www.jstor.org/stable/4147678CrossRefGoogle Scholar
  5. 5.
    Klumpenhouwer, H.: A Generalized Model of Voice-Leading for Atonal Music. Ph.D. thesis, Harvard University (1991)Google Scholar
  6. 6.
    Klumpenhouwer, H.: The inner and outer automorphisms of pitch-class inversion and transposition: some implications for analysis with Klumpenhouwer networks. Intégral 12, 81–93 (1998). http://www.jstor.org/stable/40213985Google Scholar
  7. 7.
    Lewin, D.: Transformational techniques in atonal and other music theories. Persp. New Music 21(1–2), 312–381 (1982)CrossRefGoogle Scholar
  8. 8.
    Lewin, D.: Generalized Music Intervals and Transformations. Yale University Press (1987)Google Scholar
  9. 9.
    Lewin, D.: Klumpenhouwer networks and some isographies that involve them. Music Theory Spectr. 12(1), 83–120 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mackenzie, K.C.: General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press (2005). http://www.ams.org/mathscinet-getitem?mr=2157566
  11. 11.
    Mazzola, G., Andreatta, M.: From a categorical point of view: K-nets as limit denotators. Persp. New Music 44(2), 88–113 (2006). http://www.jstor.org/stable/25164629Google Scholar
  12. 12.
    Nolan, C.: Thoughts on Klumpenhouwer networks and mathematical models: the synergy of sets and graphs. Music Theory Online 13(3) (2007)Google Scholar
  13. 13.
    Peck, R.: Generalized commuting groups. J. Music Theory 54(2), 143–177 (2010). http://www.jstor.org/stable/41300116CrossRefGoogle Scholar
  14. 14.
    Peck, R.W.: Wreath products in transformational music theory. Persp. New Music 47(1), 193–210 (2009). http://www.jstor.org/stable/25652406MathSciNetGoogle Scholar
  15. 15.
    Popoff, A.: Opycleid: a Python package for transformational music theory. J. Open Source Softw. 3(32), 981 (2018).  https://doi.org/10.21105/joss.00981CrossRefGoogle Scholar
  16. 16.
    Popoff, A., Agon, C., Andreatta, M., Ehresmann, A.: From K-nets to PK-nets: a categorical approach. Persp. New Music 54(2), 5–63 (2016). http://www.jstor.org/stable/10.7757/persnewmusi.54.2.0005CrossRefGoogle Scholar
  17. 17.
    Popoff, A., Andreatta, M., Ehresmann, A.: A categorical generalization of Klumpenhouwer networks. In: Collins, T., Meredith, D., Volk, A. (eds.) MCM 2015. LNCS (LNAI), vol. 9110, pp. 303–314. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20603-5_31CrossRefGoogle Scholar
  18. 18.
    Popoff, A., Andreatta, M., Ehresmann, A.: Relational poly-Klumpenhouwer networks for transformational and voice-leading analysis. J. Math. Music 12(1), 35–55 (2018).  https://doi.org/10.1080/17459737.2017.1406011MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ParisFrance
  2. 2.IRCAM/CNRS/Sorbonne Université and IRMA-GREAM, Université de StrasbourgStrasbourgFrance
  3. 3.Université de Picardie, LAMFAAmiensFrance

Personalised recommendations