Visualizing Temperaments: Squaring the Circle?

  • Gilles BaroinEmail author
  • André Calvet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)


Since our hearing system is accustomed to the equal temperament system, best applied to modern western musical instruments, we perceive the other tuning systems as unfamiliar, without being able to describe exactly how and what sounds weird and seems dissonant.

This paper describes the construction of new mathemusical models and visualization concepts: Two dimensional static and dynamic models, 3D and 4D animated objects.

These tools are designed to graphically compare temperaments and generate visualizations that reinforce/augment the auditory impression. We discuss limits and applications for our models and their different applications.

All videos will be available on


Temperament Visualization Hypersphere 


  1. 1.
    Forte, A.: The Structure of Atonal Music. Yale University Press, New Haven and London (1973). ISBN 0-300-01610-7Google Scholar
  2. 2.
    Jedrzejewski, F.: Mathématiques des systèmes acoustiques. Tempéraments et modèles contemporains. L’Harmattan (2002)Google Scholar
  3. 3.
    Calvet, A.: Le clavier bien obtempéré, Essai de Tempéramentologie (2019, to be published)Google Scholar
  4. 4.
    Dessault, H.: Improvised arpeggiated suites #1 and #4 (2015)Google Scholar
  5. 5.
    Guillaume, P., et al.: Pianoteq software (2005)Google Scholar
  6. 6.
    Andreatta, M., Baroin, G.: An introduction on formal and computational models in popular music analysis and generation. In: Kapoula, Z., Vernet, M. (eds.) Aesthetics and Neuroscience, pp. 257–269. Springer, Cham (2016). Scholar
  7. 7.
    Albini, G., Antonini, S.: Hamiltonian cycles in the topological dual of the tonnetz. In: Chew, E., Childs, A., Chuan, C.-H. (eds.) MCM 2009. CCIS, vol. 38, pp. 1–10. Springer, Heidelberg (2009). Scholar
  8. 8.
    Andreatta, M.: On group-theoretical methods applied to music: some compositional and implementational aspects. In: Perspectives in Mathematical Music Theory (2004)Google Scholar
  9. 9.
    Baroin, G.: The planet-4D model: an original hypersymmetric music space based on graph theory. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS, vol. 6726, pp. 326–329. Springer, Heidelberg (2011). Scholar
  10. 10.
    Amiot, E., Baroin, G.: Looking at old and new isometries between pc-sets in the Planet-4D model. In: Music Theory Online. Society for Music Theory (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire ENACUniversité Fédérale de ToulouseToulouseFrance
  2. 2.Laboratoire LLA CréatisUniversité Fédérale de ToulouseToulouseFrance
  3. 3.IRCAMParisFrance

Personalised recommendations