Advertisement

Filtration of Pitch-Class Sets Complexes

  • Louis BigoEmail author
  • Moreno Andreatta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)

Abstract

A pitch-class set complex is a multidimensional object that spatially represents a collection of pitch-class sets and the intersections between them. If we consider the pitch classes within short time slices a piece can be divided into, we can evaluate for how long some combinations of pitch-classes sound simultaneously and then filter the piece according to the most relevant ones. This filtration process is performed by considering the superlevel sets of the function that computes the cumulative duration of pitch-class sets during the piece. Experiments show that musical sequences in the same style can exhibit similar sub-complexes in the filtration of their pitch-class set complexes. Filtered pitch-class set complexes also provide original informations on the use of the tonality and on the notion of centricity within a piece.

Keywords

Pitch-class sets Harmonic similarity Simplicial complexes Pitch-class set complexes Filtration Persistent homology 

Notes

Acknowledgments

We would like to thank friends and colleagues for fruitful discussions and careful proofreading including Mattia Bergomi, Paul Ladyman, members of the spatial computing project and the Algomus team. We also thank Antoine Lafrance for his contribution on the online visualization application.

References

  1. 1.
    Ahonen, T.E., Lemström, K., Linkola, S.: Compression-based similarity measures in symbolic, polyphonic music. In: ISMIR, pp. 91–96 (2011)Google Scholar
  2. 2.
    Bergomi, M.G., Baratè, A., Di Fabio, B.: Towards a topological fingerprint of music. In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 88–100. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39441-1_9CrossRefGoogle Scholar
  3. 3.
    Bergomi, M.G.: Dynamical and topological tools for (modern) music analysis. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI (2015)Google Scholar
  4. 4.
    Bigo, L., Andreatta, M.: Topological Structures in Computer-Aided Music Analysis. Computational Music Analysis, pp. 57–80. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-25931-4_3CrossRefzbMATHGoogle Scholar
  5. 5.
    Bigo, L., Andreatta, M., Giavitto, J.-L., Michel, O., Spicher, A.: Computation and visualization of musical structures in chord-based simplicial complexes. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS (LNAI), vol. 7937, pp. 38–51. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39357-0_3CrossRefzbMATHGoogle Scholar
  6. 6.
    Catanzaro, M.J.: Generalized tonnetze. J. Math. Music 5(2), 117–139 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cohn, R.: Neo-riemannian operations, parsimonious trichords, and their “tonnetz” representations. J. Music Theor. 41(1), 1–66 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Haas, W.B., Wiering, F., Veltkamp, R.C.: A geometrical distance measure for determining the similarity of musical harmony. Int. J. Multimedia Inf. Retrieval 2(3), 189–202 (2013)CrossRefGoogle Scholar
  9. 9.
    Edelsbrunner, H.: Geometry and Topology for Mesh Generation, vol. 7. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  10. 10.
    Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)Google Scholar
  11. 11.
    Forte, A.: The Structure of Atonal Music, vol. 304. Yale University Press, New Haven (1973)Google Scholar
  12. 12.
    Gollin, E.: Some aspects of three-dimensional “tonnetze”. J. Music Theor. 1, 195–206 (1998)CrossRefGoogle Scholar
  13. 13.
    Lascabettes, P.: Homologie Persistante Appliquée à le reconnaissance de genres musicaux. Master’s thesis, École Normale Supérieure Paris-Saclay/Irma (2018)Google Scholar
  14. 14.
    Lee, K.: Automatic chord recognition from audio using enhanced pitch class profile. In: ICMC (2006)Google Scholar
  15. 15.
    Marsden, A.: Schenkerian analysis by computer: a proof of concept. J. New Music Res. 39(3), 269–289 (2010)CrossRefGoogle Scholar
  16. 16.
    Martorell, A., Gómez, E.: Contextual set-class analysis. In: Meredith, D. (ed.) Computational Music Analysis, pp. 81–110. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-25931-4_4CrossRefzbMATHGoogle Scholar
  17. 17.
    Mazzola, G.: Geometrie der Töne: Elemente der Mathematischen Musiktheorie. Birkhäuser (1990)Google Scholar
  18. 18.
    Mazzola, G.: The topos of music: geometric logic of concepts, theory, and performance. Birkhäuser (2012)Google Scholar
  19. 19.
    Sapp, C.S.: Harmonic visualizations of tonal music. In: ICMC, vol. 1, pp. 419–422. Citeseer (2001)Google Scholar
  20. 20.
    Temperley, D., Marvin, E.W.: Pitch-class distribution and the identification of key. Music Percept.: Interdisc. J. 25(3), 193–212 (2008)CrossRefGoogle Scholar
  21. 21.
    Tymoczko, D.: A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice. Oxford University Press, Oxford (2010)Google Scholar
  22. 22.
    Tymoczko, D.: The generalized tonnetz. J. Music Theor. 1, 1–52 (2012)CrossRefGoogle Scholar
  23. 23.
    White, C.W., Quinn, I.: The yale-classical archives corpus. Empirical Musicology Rev. 11(1), 50–58 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CRIStAL, UMR 9189, CNRS, Université de LilleLilleFrance
  2. 2.IRCAM/CNRS/Sorbonne Université, IRMA-GREAM, Université de StrasbourgStrasbourgFrance

Personalised recommendations