The Hierarchy of Rameau Groups

  • Franck JedrzejewskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)


This paper contributes to the transformational study of progressions of seventh chords and generalizations thereof. PLR transformations are contextual transformations that originally apply only to consonant triads. These transformations were introduced by David Lewin and were inspired the works of musicologist Hugo Riemann. As an alternative to other attempts to define transformations on seventh chords, we define new groups in this article, called Rameau groups, which transform all types of seventh or ninth chords or more generally, any chords formed of stacks of major or minor thirds. These groups form a hierarchy for inclusion. We study on musical examples the ability of these operators to show symmetries in the progression of seventh chords.


Neo-Riemannian group PLR-group Rameau-Schillinger operators Rameau groups Generalized interval systems Lewin Parsimonious voice leading 



We thank anonymous reviewers for valuable remarks and Thomas Noll for comments that greatly improved the manuscript.


  1. 1.
    Arnett, J., Barth, E.: Generalizations of the Tonnetz: tonality revisited. In: Proceedings of the 2011 Midstates Conference on Undergraduate Research in Computer Music and Mathematics (2011)Google Scholar
  2. 2.
    Cannas, S., Antonini, S., Pernazza, L.: On the group of transformations of classical types of seventh chords. In: Agustín-Aquino, O.A., Lluis-Puebla, E., Montiel, M. (eds.) MCM 2017. LNCS (LNAI), vol. 10527, pp. 13–25. Springer, Cham (2017). Scholar
  3. 3.
    Cannas, S.: Geometric representation and algebraic formalization of musical structures. Ph.D. Dissertation, University of Strasbourg and Università degli Studi di Pavia e di Milano-Biocca (2018)Google Scholar
  4. 4.
    Childs, A.: Moving beyond Neo-Riemannian triads: exploring a transformational model for seventh chords. J. Music Theory 42(2), 191–193 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cohn, R.: Neo-Riemannian operations, parsimonious trichords, and their Tonnetz representation. J. Music Theory 41, 1–66 (1997)CrossRefGoogle Scholar
  6. 6.
    Cohn, R.: Introduction to neo-riemannian theory: a survey and a historical perspective. J. Music Theory 42(2), 167–180 (1998)CrossRefGoogle Scholar
  7. 7.
    Cohn, R.: Audacious Euphony. Chromaticism and the Triad’s Second Nature. Oxford University Press, Oxford (2012)Google Scholar
  8. 8.
    Douthett, J., Steinbach, P.: Parsimonious graphs: a study in parsimony, contextual transformation, and modes of limited transposition. J. Music Theory 42(2), 241–263 (1998)CrossRefGoogle Scholar
  9. 9.
    Gollin, E.: Some aspects of three-dimensional Tonnetze. J. Music Theory 42(2), 195–206 (1998)CrossRefGoogle Scholar
  10. 10.
    Fiore, T., Satyendra, R.: Generalized contextual groups. Music Theory. Online 11(3), 1–27 (2005)Google Scholar
  11. 11.
    Jedrzejewski, F.: Hétérotopies musicales. Modèles mathématiques de la musique, Paris, Hermann (2019)Google Scholar
  12. 12.
    Kerkez, B.: Extension of Neo-Riemannian PLR-group to Seventh Chords. In: Bridges, Mathematics, Music, Art, Architecture, Culture, pp. 485–488 (2012)Google Scholar
  13. 13.
    Rameau, J.-P.: Traité de l’harmonie réduite à ses principes naturels, Paris (1722)Google Scholar
  14. 14.
    Rameau, J.-P.: Nouveau système de musique théorique, Paris (1726)Google Scholar
  15. 15.
    Lewin, D.: Generalized Musical Intervals and Transformations. Yale University Press, New Haven (1987)Google Scholar
  16. 16.
    Riemann, H.: Handbuch der Harmonielehre. Breitkopf, Leipzig (1887)Google Scholar
  17. 17.
    Schillinger, J.: The Schillinger System on Musical Compostion. C. Fischer, New York (1946)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Atomic Energy CommissionUniversité Paris Lumières (CEA-CIPh)ParisFrance

Personalised recommendations