Non-Contextual JQZ Transformations

  • Franck JedrzejewskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)


Initiated by David Lewin, the contextual PLR-transformations are well known from neo-Riemannian theory. As it has been noted, these transformations are only used for major and minor triads. In this paper, we introduce non-contextual bijections called JQZ transformations that could be used for any kind of chord. These transformations are pointwise, and the JQZ group that they generate acts on any type of n-chord. The properties of these groups are very similar, and the JQZ-group could extend the PLR-group in many situations. Moreover, the hexatonic and octatonic subgroups of JQZ and PLR groups are subdual.


Neo-Riemannian group PLR-group JQZ-group Generalized interval systems Lewin Parsimonious voice leading 



We thank anonymous reviewers for valuable remarks and Thomas Noll for comments that greatly improved the manuscript.


  1. 1.
    Berry, C.: Thomas fiore hexatonic systems and dual groups in mathematical music theory. Involve J. Math. 11(2), 253–270 (2018)CrossRefGoogle Scholar
  2. 2.
    Crans, A.S., Fiore, T.M., Satyendra, R.: Musical actions of dihedral groups. Am. Math. Mon. 116(6), 479–495 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cohn, R.: Neo-riemannian operations, parsimonious trichords, and their tonnetz representation. J. Music Theor. 41(1), 1–66 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cohn, R.: Introduction to neo-riemannian theory: a surveyand a historical perspective. J. Music Theory 42(2), 167–180 (1998)CrossRefGoogle Scholar
  5. 5.
    Cohn, R.: Audacious Euphony. Chromaticism and the Triad’s Second Nature. Oxford University Press, New York (2012)CrossRefGoogle Scholar
  6. 6.
    Douthett, J., Steinbach, P.: Parsimonious graphs: a study in parsimony, contextual transformation, and modes of limited transposition. J. Music Theor. 42(2), 241–263 (1998)CrossRefGoogle Scholar
  7. 7.
    Fiore, T., Satyendra, R.: Generalized contextual groups. Music Theory Online 11(3) (2005)Google Scholar
  8. 8.
    Fiore, T.M., Noll, T.: Commuting groups and the topos of triads. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS (LNAI), vol. 6726, pp. 69–83. Springer, Heidelberg (2011). Scholar
  9. 9.
    Fiore, T., Noll, T., Satyendra, R.: Morphisms of generalized interval systems and PR-Groups. J. Math. Music 3, 3–27 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fiore, T., Noll, T.: Voicing transformations and a linear representation of uniform triadic transformations. Siam J. Appl. Algebra Geom. 2(2), 281–313 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hook, J.: Uniform triadic transformations. J. Music Theory 46(1/2), 57–126 (2002)CrossRefGoogle Scholar
  12. 12.
    Hyer, B.: Tonal Intuitions in Tristan Und Isolde. PhD diss., Yale University (1989)Google Scholar
  13. 13.
    Hyer, B.: Reimag(in)ing riemann. J. Music Theory 39(1), 101–138 (1995)CrossRefGoogle Scholar
  14. 14.
    Jedrzejewski, F.: Permutation groups and chord tesselations. In: ICMC Proceedings, Barcelona (2005)Google Scholar
  15. 15.
    Lewin, D.: Generalized Musical Intervals and Transformations. Yale University Press, New Haven and London (1987)Google Scholar
  16. 16.
    Riemann, H.: Handbuch der Harmonielehre. Breitkopf & Härte, Leipzig (1887)Google Scholar
  17. 17.
    Waller, D.A.: Some combinatorial aspects of the musical chords. Math. Gaz. 62, 12–15 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Atomic Energy CommissionUniversité Paris Lumières (CEA-CIPh)ParisFrance

Personalised recommendations