Skip to main content

Commutative Regular Languages – Properties and State Complexity

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11545))

Abstract

We consider the state complexity of intersection, union and the shuffle operation on commutative regular languages for arbitrary alphabets. Certain invariants will be introduced which generalize known notions from unary languages used for refined state complexity statements and existing notions for commutative languages used for the subclass of periodic languages. Our bound for shuffle is formulated in terms of these invariants and shown to be optimal, from this we derive the bound of \((2nm)^{|\varSigma |}\) for commutative languages of state complexities n and m respectively. This result is a considerable improvement over the general bound \(2^{mn-1} + 2^{(m-1)(n-1)}(2^{m-1} -1)(2^{n-1}-1)\).

We have no improvement for union and intersection for any alphabet, as was to be expected from the unary case. The general bounds are optimal here. Seeing commutative languages as generalizing unary languages is a guiding theme. For our results we take a closer look at a canonical automaton model for commutative languages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If not otherwise stated we assume that our alphabet has the form \(\varSigma = \{a_1, \ldots , a_k\}\) and k denotes the number of symbols.

  2. 2.

    These were introduced in [10] under the name of pure-group events.

  3. 3.

    It is not possible to give such an automaton for \(|\varSigma |\ge 1\), but allowing \(\varSigma =\emptyset \) the single-state automaton will do, or similar as \(\varSigma ^{*} = \{\varepsilon \}\) in this case.

  4. 4.

    Note that the notions of periodic and aperiodic languages appearing in this article are not meant to be related in dichotomous way.

References

  1. Brzozowski, J., Jirásková, G., Liu, B., Rajasekaran, A., Szykuła, M.: On the state complexity of the shuffle of regular languages. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 73–86. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41114-9_6

    Chapter  MATH  Google Scholar 

  2. Brzozowski, J.A., Liu, B.: Quotient complexity of star-free languages. Int. J. Found. Comput. Sci. 23(6), 1261–1276 (2012)

    Article  MathSciNet  Google Scholar 

  3. Brzozowski, J.A., Simon, I.: Characterizations of locally testable events. Discrete Math. 4(3), 243–271 (1973)

    Article  MathSciNet  Google Scholar 

  4. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theor. Comput. Sci. 27, 311–332 (1983)

    Article  MathSciNet  Google Scholar 

  5. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J. Autom. Lang. Comb. 21(4), 251–310 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proc. Am. Math. Soc. 17, 1043–1049 (1966)

    Article  MathSciNet  Google Scholar 

  7. Cano Gómez, A., Álvarez, G.I.: Learning commutative regular languages. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 71–83. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88009-7_6

    Chapter  Google Scholar 

  8. Jirásková, G., Masopust, T.: State complexity of projected languages. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 198–211. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22600-7_16

    Chapter  MATH  Google Scholar 

  9. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR 194(6), 1266–1268 (1970)

    MathSciNet  Google Scholar 

  10. McNaughton, R.: The loop complexity of pure-group events. Inf. Control 11(1/2), 167–176 (1967)

    Article  MathSciNet  Google Scholar 

  11. McNaughton, R., Papert, S.A.: Counter-Free Automata. MIT Research Monograph, vol. 65. The MIT Press, Cambridge (1971)

    MATH  Google Scholar 

  12. Pighizzini, G.: Unary language concatenation and its state complexity. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 252–262. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44674-5_21

    Chapter  MATH  Google Scholar 

  13. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. Int. J. Found. Comput. Sci. 13(1), 145–159 (2002)

    Article  MathSciNet  Google Scholar 

  14. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

I thank my supervisor, Prof. Dr. Henning Fernau, for giving valuable feedback, discussions and research suggestions concerning the content of this article. I also thank the anonymous reviewers whose comments improved the presentation of this article. I also thank an anonymous reviewer of a previous version, whose feedback ultimately led to a new approach and stronger results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, S. (2019). Commutative Regular Languages – Properties and State Complexity. In: Ćirić, M., Droste, M., Pin, JÉ. (eds) Algebraic Informatics. CAI 2019. Lecture Notes in Computer Science(), vol 11545. Springer, Cham. https://doi.org/10.1007/978-3-030-21363-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21363-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21362-6

  • Online ISBN: 978-3-030-21363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics